Evaluation of the efficiency of intersystem crossing to a triplet state of fullerene in complexes with amino acids

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The important photophysical process that determines the efficiency of photosensitizers is saturation of a triplet state by intersystem crossing during light absorption. In the present work, C60 fullerene complexes with amino acids glycine, lysine, methionine and threonine were studied as promising photosensitizers. All these complexes, for which the calculations were done, demonstrate high values of rate constants of transition to triplet states and a high probability of the ability to generate reactive oxygen species through excitation in the visible spectrum. The carboxyl groups of amino acids that are not involved in electronic excitation can be used as the component of specific DNA aptamers for conjugation to photoactive complexes for a tumor-targeting drug delivery system.

Авторлар туралы

A. Buchelnikov

Sevastopol State University

Email: tolybas@rambler.ru
Sevastopol, Russia

P. Sokolov

Sevastopol State University;Saint-Petersburg State University

Sevastopol, Russia;Saint Petersburg, Russia

R. Ramasanoff

Sevastopol State University

Sevastopol, Russia

Әдебиет тізімі

  1. M. G. Mokwena, C. A. Kruger, M. T. Ivan, et al., Photodiagn. Photodyn. Ther., 22, 147 (2018).
  2. Y. N. Konan, R. Gurny, and E. Allcmann, J. Photochem. Photobiol. B, 66 (2), 89 (2002).
  3. N. Hodgkinson, C. A. Kruger, and H. Abrahamse, Tumor Biol., 39 (10), 1 (2017).
  4. L. Benov, Med. Princ. Pract., 24 (Suppl. 1), 14 (2015).
  5. H. W. Kroto, J. R. Heath, S. C. O'Brien, et al., Nature, 318 (6042), 162 (1985).
  6. Y. Zhang, B. Wang, R. Zhao, et al., Mater. Sci. Eng. C, 115, 111099 (2020).
  7. M. R. Hamblin, Photochem. Photobiol. Sci., 17 (11), 1515 (2018).
  8. V. V. Sharoyko, S. V. Ageev, N. E. Podolsky, et al., J. Mol. Liq., 323, 114990 (2021).
  9. R. Yazdian-Robati, P. Bayat, F. Oroojalian, et al., Int. J. Biol. Macromol., 155, 1420 (2020).
  10. Q. Liu, L. Xu, X. Zhang, et al., Chem. Asian J., 8 (10), 2370 (2013).
  11. V. V. Sharoyko, O. S. Shemchuk, A. A. Meshcheriakov, et al., Nanomedicine NBM, 40, 102500 (2022).
  12. G. G. Panova, E. B. Serebryakov, K. N. Semenov, et al., J. Nanomater., 2019, 2306518 (2019).
  13. G. Jiang, F. Yin, J. Duan, et al., J. Mater. Sci. Mater. Med., 26 (1), 24 (2015).
  14. M. E. Casida, in Recent Advances in Density Functional Methods. Part I, Ed. by D. P. Chong (World Scientific, Singapore, 1995), Chap. 5, pp. 155-192.
  15. A. D. Becke, J. Chem. Phys., 98 (7), 5648 (1993).
  16. G. A. Petersson, A. Bennett, T. G. Tensfeldt, et al., J. Chem. Phys., 89 (4), 2193 (1988).
  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 Revision A.01 (Gaussian, Inc., Wallingford CT (USA), 2016).
  18. R. H. Xie, G. W. Bryant, L. Jensen, et al., J. Chem. Phys., 118 (19), 8621 (2003).
  19. C. M. Marian, Wiley Interdiscip. Rev.Comput. Mol. Sci., 2 (2), 187 (2012).
  20. S. G. Chiodo and M. Leopoldini, Comput. Phys.Commun., 185 (2), 676 (2014).
  21. R. R. Ramasanoff and P. A. Sokolov, Chem. Phys. Lett., 807, 140076 (2022).

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>