Evaluation of the efficiency of intersystem crossing to a triplet state of fullerene in complexes with amino acids

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The important photophysical process that determines the efficiency of photosensitizers is saturation of a triplet state by intersystem crossing during light absorption. In the present work, C60 fullerene complexes with amino acids glycine, lysine, methionine and threonine were studied as promising photosensitizers. All these complexes, for which the calculations were done, demonstrate high values of rate constants of transition to triplet states and a high probability of the ability to generate reactive oxygen species through excitation in the visible spectrum. The carboxyl groups of amino acids that are not involved in electronic excitation can be used as the component of specific DNA aptamers for conjugation to photoactive complexes for a tumor-targeting drug delivery system.

Sobre autores

A. Buchelnikov

Sevastopol State University

Email: tolybas@rambler.ru
Sevastopol, Russia

P. Sokolov

Sevastopol State University;Saint-Petersburg State University

Sevastopol, Russia;Saint Petersburg, Russia

R. Ramasanoff

Sevastopol State University

Sevastopol, Russia

Bibliografia

  1. M. G. Mokwena, C. A. Kruger, M. T. Ivan, et al., Photodiagn. Photodyn. Ther., 22, 147 (2018).
  2. Y. N. Konan, R. Gurny, and E. Allcmann, J. Photochem. Photobiol. B, 66 (2), 89 (2002).
  3. N. Hodgkinson, C. A. Kruger, and H. Abrahamse, Tumor Biol., 39 (10), 1 (2017).
  4. L. Benov, Med. Princ. Pract., 24 (Suppl. 1), 14 (2015).
  5. H. W. Kroto, J. R. Heath, S. C. O'Brien, et al., Nature, 318 (6042), 162 (1985).
  6. Y. Zhang, B. Wang, R. Zhao, et al., Mater. Sci. Eng. C, 115, 111099 (2020).
  7. M. R. Hamblin, Photochem. Photobiol. Sci., 17 (11), 1515 (2018).
  8. V. V. Sharoyko, S. V. Ageev, N. E. Podolsky, et al., J. Mol. Liq., 323, 114990 (2021).
  9. R. Yazdian-Robati, P. Bayat, F. Oroojalian, et al., Int. J. Biol. Macromol., 155, 1420 (2020).
  10. Q. Liu, L. Xu, X. Zhang, et al., Chem. Asian J., 8 (10), 2370 (2013).
  11. V. V. Sharoyko, O. S. Shemchuk, A. A. Meshcheriakov, et al., Nanomedicine NBM, 40, 102500 (2022).
  12. G. G. Panova, E. B. Serebryakov, K. N. Semenov, et al., J. Nanomater., 2019, 2306518 (2019).
  13. G. Jiang, F. Yin, J. Duan, et al., J. Mater. Sci. Mater. Med., 26 (1), 24 (2015).
  14. M. E. Casida, in Recent Advances in Density Functional Methods. Part I, Ed. by D. P. Chong (World Scientific, Singapore, 1995), Chap. 5, pp. 155-192.
  15. A. D. Becke, J. Chem. Phys., 98 (7), 5648 (1993).
  16. G. A. Petersson, A. Bennett, T. G. Tensfeldt, et al., J. Chem. Phys., 89 (4), 2193 (1988).
  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 Revision A.01 (Gaussian, Inc., Wallingford CT (USA), 2016).
  18. R. H. Xie, G. W. Bryant, L. Jensen, et al., J. Chem. Phys., 118 (19), 8621 (2003).
  19. C. M. Marian, Wiley Interdiscip. Rev.Comput. Mol. Sci., 2 (2), 187 (2012).
  20. S. G. Chiodo and M. Leopoldini, Comput. Phys.Commun., 185 (2), 676 (2014).
  21. R. R. Ramasanoff and P. A. Sokolov, Chem. Phys. Lett., 807, 140076 (2022).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies