Evaluation of the efficiency of intersystem crossing to a triplet state of fullerene in complexes with amino acids

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The important photophysical process that determines the efficiency of photosensitizers is saturation of a triplet state by intersystem crossing during light absorption. In the present work, C60 fullerene complexes with amino acids glycine, lysine, methionine and threonine were studied as promising photosensitizers. All these complexes, for which the calculations were done, demonstrate high values of rate constants of transition to triplet states and a high probability of the ability to generate reactive oxygen species through excitation in the visible spectrum. The carboxyl groups of amino acids that are not involved in electronic excitation can be used as the component of specific DNA aptamers for conjugation to photoactive complexes for a tumor-targeting drug delivery system.

作者简介

A. Buchelnikov

Sevastopol State University

Email: tolybas@rambler.ru
Sevastopol, Russia

P. Sokolov

Sevastopol State University;Saint-Petersburg State University

Sevastopol, Russia;Saint Petersburg, Russia

R. Ramasanoff

Sevastopol State University

Sevastopol, Russia

参考

  1. M. G. Mokwena, C. A. Kruger, M. T. Ivan, et al., Photodiagn. Photodyn. Ther., 22, 147 (2018).
  2. Y. N. Konan, R. Gurny, and E. Allcmann, J. Photochem. Photobiol. B, 66 (2), 89 (2002).
  3. N. Hodgkinson, C. A. Kruger, and H. Abrahamse, Tumor Biol., 39 (10), 1 (2017).
  4. L. Benov, Med. Princ. Pract., 24 (Suppl. 1), 14 (2015).
  5. H. W. Kroto, J. R. Heath, S. C. O'Brien, et al., Nature, 318 (6042), 162 (1985).
  6. Y. Zhang, B. Wang, R. Zhao, et al., Mater. Sci. Eng. C, 115, 111099 (2020).
  7. M. R. Hamblin, Photochem. Photobiol. Sci., 17 (11), 1515 (2018).
  8. V. V. Sharoyko, S. V. Ageev, N. E. Podolsky, et al., J. Mol. Liq., 323, 114990 (2021).
  9. R. Yazdian-Robati, P. Bayat, F. Oroojalian, et al., Int. J. Biol. Macromol., 155, 1420 (2020).
  10. Q. Liu, L. Xu, X. Zhang, et al., Chem. Asian J., 8 (10), 2370 (2013).
  11. V. V. Sharoyko, O. S. Shemchuk, A. A. Meshcheriakov, et al., Nanomedicine NBM, 40, 102500 (2022).
  12. G. G. Panova, E. B. Serebryakov, K. N. Semenov, et al., J. Nanomater., 2019, 2306518 (2019).
  13. G. Jiang, F. Yin, J. Duan, et al., J. Mater. Sci. Mater. Med., 26 (1), 24 (2015).
  14. M. E. Casida, in Recent Advances in Density Functional Methods. Part I, Ed. by D. P. Chong (World Scientific, Singapore, 1995), Chap. 5, pp. 155-192.
  15. A. D. Becke, J. Chem. Phys., 98 (7), 5648 (1993).
  16. G. A. Petersson, A. Bennett, T. G. Tensfeldt, et al., J. Chem. Phys., 89 (4), 2193 (1988).
  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 Revision A.01 (Gaussian, Inc., Wallingford CT (USA), 2016).
  18. R. H. Xie, G. W. Bryant, L. Jensen, et al., J. Chem. Phys., 118 (19), 8621 (2003).
  19. C. M. Marian, Wiley Interdiscip. Rev.Comput. Mol. Sci., 2 (2), 187 (2012).
  20. S. G. Chiodo and M. Leopoldini, Comput. Phys.Commun., 185 (2), 676 (2014).
  21. R. R. Ramasanoff and P. A. Sokolov, Chem. Phys. Lett., 807, 140076 (2022).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##