Oxidative homeostasis in germinating pea seeds (isum sativum) depending on ultrasonic exposure duration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effects of ultrasonic exposure durations (5, 10 and 20 min) with intensity of 25 kW/m2 and the frequency of 26.1 kHz on the extent of lipid peroxidation, oxidative modification of proteins, the activity of cysteine proteinases, and gene expression in germinating pea seeds were studied. It has been shown that the intensity in the area that had seeds planted (just over the central ultrasound generator) was rather uniformly distributed, but at the same time gave rise to diffuse reflection. A range of tendencies in changes of the indicators under study were seen after ultrasound exposure. The level of malonic dialdehyde increased with increasing duration of ultrasound exposure. This study revealed the increased amount of oxidized proteins in germinating pea seeds after a 10 min-exposure to ultrasound, and a decrease in the level of oxidative modification of proteins present in seeds subjected to ultrasound for a period of 20 min. The activity of cysteine proteinases was higher in pea seeds after a 5-min exposure to ultrasound, but the amount of mRNA transcripts increased in all experimental samples.

About the authors

S. S Tarasov

Nizhny Novgorod State Agricultural Academy

Email: tarasov_ss@mail.ru
Nizhny Novgorod, Russia

E. K Krutova

Nizhny Novgorod State Agricultural Academy

Nizhny Novgorod, Russia

References

  1. J. H. J. Leveau and S. E. Lindow, Appl. Environ. Microbiol., 71 (5), 2365 (2005).
  2. Ю. В. Синицына, Я. В. Середнева, А. П. Веселов и В. С. Сухов, Современные проблемы науки и образования, № 6, 1374 (2014).
  3. Ю. В. Синицына, Л. Н. Олюнина, Е. К. Крутова и др., Современные проблемы науки и образования, № 6, 663 (2015).
  4. С. Han and Р. Yang, Proteomics, 15 (10), 1671 (2015).
  5. S. Penfield, Curr. Biol., 27 (17), 874 (2017).
  6. H. Nonogaki, J.Integr. Plant Biol., 61 (5), 541 (2019).
  7. Q. Wang, G. Chen, H. Yersaiyiti, et al., PLoS One, 7 (10), 47204 (2012).
  8. X. Liu, C. Zhao, Q. Liu, et al., Ying Yong Sheng Tai Xue Bao, 29 (6), 1857 (2018).
  9. A. C. Miano, Food Res.Int., 106, 928 (2018).
  10. A. C. Miano and V. D. Sabadoti, J. Food Sci., 84 (11), 3179 (2019).
  11. J. Ding, J. Johnson, Y. Fang Chu, and H. Feng, Food Chem., 283, 239 (2019).
  12. Ю. А. Владимиров и А. И. Арчаков, Перекисное окисление липидов в биологических мембранах (Наука, М., 1972).
  13. J. M. C. Gutteridge, Clin. Chem., 41 (12), 1828 (2005).
  14. Е. Е. Дубинина, Продукты метаболизма кислорода в функциональной активности клеток (Медицинская пресса, СПб., 2006).
  15. G. Noctor, C. Lelarge-Trouverie, and A. Mhamdi, Phytochemistry, 112, 33 (2015).
  16. M. A. Farooq, A. K. Niazi, J. Akhtar, et al., Plant Physiol. Biochem., 141, 353 (2019).
  17. J. M. Gebichi, Redox Rep. 3 (2), 9 (1997).
  18. M. Gracanin, C. L. Hawkins, D. I Pattison, and M. J. Davies, Free Radic. Biol. Med., 47 (1), 92 (2009).
  19. C. L. Hawkins, P. E. Morgan, and M. J. Davies, Free Radic. Biol. Med., 46 (8), 965 (2009).
  20. B. Wiltschi, Fungal Genetics and Biology, 89, 137 (2016).
  21. Q. Gan and Ch. Fan, Biochim. Biophys. Acta - General Subjects, 1861 (11), Part B., 3047 (2017).
  22. J. T. Stieglitz, H. P. Kehoe, M. Lei, and J. A. Van Deventer, ACS Synth. Biol., 7 (9), 2256 (2018).
  23. E. G. Worst, M. P. Exner, A. De Simone, et al., J. Vis. Exp., 114, 54273 (2016).
  24. M. S. Siegrist, S. Whiteside, J. C. Jewett, et al., ACS Chem. Biol. 8, 500 (2013).
  25. A. Deiters and P. G. Schultz, Bioorg. Med. Chem. Lett., 15, 1521 (2005).
  26. L. Tan, S. Chen, T. Wang, and S. Dai, Proteomics, 13 (12-13), 1850 (2013).
  27. W. Q. Wang, S. J. Liu, S. Q. Song, and I. M. Moller, Plant Physiol. Biochem., 86, 1 (2015).
  28. S. Penfield and D. R. MacGregor, J. Exp. Bot., 68 (4), 819 (2017).
  29. T. Steinbrecher and G. Leubner-Metzger, J. Exp. Bot., 68 (4), 765 (2017).
  30. Т. Н. Пашовкин, Дис.. д-ра биол. наук (ИБК РАН, М., 1998).
  31. Т. Н. Пашовкин и Г. В. Шильников, Научное приборостроение, 10 (3), 17 (2000).
  32. И. Д. Стальная и Т. Г. Гаришвили, Современные методы в биохимии (Медицина, М., 1977).
  33. Е. Е. Дубинина и др., Вопр. мед. химии, 41 (1), 24 (1995).
  34. И. Ф. Александрова, А. П. Веселов и Ю. Р. Ефременко, Физиол. растений, 46 (1), 223 (1999).
  35. A. B. Gdl, J. W. Carnwath, et al., Reprod. Fertil. Dev., 18 (3), 365 (2006).
  36. T. D. Schmittgen, B. A. Zakrajsek, et al., Anal. Biochem., 285 (2), 194 (2000).
  37. K. A. Wilson and A. T. Wilson, J. Plant Physiol., 224225, 86 (2018).
  38. M. Bourgeois, F. Jacquin, V. Savois, et al., Proteomics, 9 (2), 254 (2009).
  39. M. Bourgeois, F. Jacquin, F. Cassecuelle, et al., Proteomics, 11 (9), 1581 (2011).
  40. Z. X. Lu, J. F. He, Y. C. Zhang, and D. J. Bing, Crit. Rev. Food Sci. Nutr., 60 (15), 2593 (2019).
  41. P. Maharjan, J. Penny, D. L. Partington, and J. F. Panozzo, J. Sci. Food Agric., 99 (12), 5409 (2019).
  42. C. L. Hawkins and M. J. Davies, J. Biol. Chem., 294 (51), 19683 (2019).
  43. Ю. И. Губский и др., Совр. пробл. токсикологии, 8 (3), 20 (2005).
  44. М. А. Фомина и Ю. В. Абаленихина, Способ комплексной оценки содержания продуктов окислительной модификации белков в тканях и биологических жидкостях: методические рекомендации (РИО РязГМУ, Рязань, 2014).
  45. C. E. Salas, M. T. R. Gomes, M. Hernandez, and M. T. P. Lopes, Phytochemistry, 69 (12), 2263 (2008).
  46. K. J. Davies, Biochem. Soc. Trans., 21 (2), 346 (1993).
  47. В. Б. Акопян и Ю. А. Ершов, Основы взаимодействия ультразвука с биологическими объектами (Изд-во МГТУ, Москва, 2005).
  48. W. Duco, V. Grosso, D. Zaccari, and A. T. Soltermann, Methods, 109, 141 (2016).
  49. T. N. Pashovkin, P. A. Grigoriev, A. P. Sarvazyan, and H. I. Hein, Brit. J. Cancer, 45, 225 (1982).
  50. Е. В. Мельникова, В. К. Утешев, Т. Н. Пашовкин и др., Биофизика, 50 (3), 500 (2005).
  51. I. Lbpez-Ribera and C. M. Vicient. Plant Methods, 13 (31) (2017).
  52. P. Riesz, D. Berdahl, and C. L. Christman, Environ. Health Perspect., 64, 233 (1985).
  53. P. Riesz, D. Berdahl, and C. L. Christman, Environ. Health Perspect., 64, 233 (1985).
  54. P. Riesz and T. Kondo, Free Radic. Biol. Med., 13 (3), 247 (1992).
  55. N. Murano, M. Ishizaki, S. Sato, et al., Arch. Ophthalmol., 126 (6), 816 (2008).
  56. K. Okada, N. Kudo, M. A. Hassan, et al., Ultrason. Sonochem., 16 (4), 512 (2009).
  57. Q. A. Zhang, Y. Shen, X. H. Fan, et al., Ultrason. Sonochem., 27, 96 (2015).
  58. H. Cao, R. Sun, J. Shi, et al., Ultrason. Sonochem., 77, 105685 (2021).
  59. X. Deng, Y. Ma, Y. Lei, et al., Ultrason. Sonochem., 76, 105659 (2021).
  60. J. Su and A. Cavaco-Paulo, Ultrason Sonochem., 76, 105653 (2021).
  61. M. B. Feeney and C. Schoneich, Antioxid. Redox Signal., 17 (11), 1571 (2012).
  62. P. Kay, J. R. Wagner, H. Gagnon, et al., Chem. Res. Toxicol., 26 (9), 1333 (2013).
  63. R. Ogawa, A. Watanabe, and A. Morii, J. Med. Ultrason., 42 (4), 467 (2015).
  64. K. Groten, C. Dutilleul, P. D. van Heerden, et al., FEBS Lett., 580 (5), 1269 (2006).
  65. I. V. Kardailsky and N. J. Brewin, Mol. Plant Microbe Interact., 9 (8), 689 (1996).
  66. B. Belenghi, M. Salomon, and A. Levine. J. Exp. Bot., 55 (398), 889 (2004).
  67. S. Li, X. Yang, Y. Zhang, et al., Ultrason. Sonochem., 31, 20 (2016).
  68. Y. Hoshino, T. Kawasaki, and Y. Okahata, Biomacromolecules, 7 (3), 682 (2006).
  69. M. H. Ali, K. A. Al-Saad, and C. M. Ali, Phys. Med., 30 (2), 221 (2014).
  70. T. Kondo, C. M. Krishna, and P. Riesz, Free Radic. Res.Commun., 6 (2-3), 109 (1989).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies