On the interaction of resveratrol with nucleosomes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The natural polyphenol resveratrol has anti-inflammatory, antioxidant, antitumor and geroprotective properties. The wide range of resveratrol activities is determined by its ability to modulate a variety of signaling pathways in the cell and interact with various target molecules. It is known that resveratrol interacts with DNA, but the effect of this interaction on the structure of chromatin has not been studied. In this work, we studied the effect of resveratrol on the structure of the nucleosome, the functional and structural unit of chromatin. Fluorescent microscopy of single nucleosomes based on Forster resonance energy transfer and analysis of changes in the electrophoretic mobility of nucleosomes in polyacrylamide gel showed that, at a concentration of ~100 μM, resveratrol affects the conformation of DNA linker regions, limits the conformational dynamics of DNA near the nucleosome boundary, but does not cause significant changes in the folding of nucleosomal DNA on the histone octamer. A small effect of resveratrol on the structure of the nucleosome compared to quercetin is presumably determined by the binding mode of resveratrol in a minor groove of DNA.

About the authors

N. V Maluchenko

Lomonosov Moscow State University

Email: mal_nat@mail.ru
Moscow, Russia

T. V Andreeva

Lomonosov Moscow State University

Moscow, Russia

O. V Geraskina

Lomonosov Moscow State University

Moscow, Russia

N. S Gerasimova

Lomonosov Moscow State University

Moscow, Russia

A. V Lubitelev

Lomonosov Moscow State University

Moscow, Russia

A. V Feofanov

Lomonosov Moscow State University

Moscow, Russia

V. M Studitsky

Lomonosov Moscow State University;Fox Chase Cancer Center

Moscow, Russia;Philadelphia, USA

References

  1. S. Tangutoori, P. Baldwin, and S. Sridhar, Maturitas, 81 (1), 5 (2015).
  2. M. Jhanji, C. N. Rao, and M. Sajish, GeroScience, 43, 1171 (2021).
  3. R. Pangeni, J. K. Sahni, J. Ali, et al., Expert Opin. Drug Deliv., 11, 1285 (2014).
  4. B. Tian and J. Liu, J. Sci. Food Agricult., 100, 1392 (2020).
  5. L. Bavaresco, Drugs Exp. Clin. Res., 29, 181 (2003).
  6. D. Delmas, A. Lancon, D. Colin, et al., Curr. Drug Targets, 7, 423 (2006).
  7. I. Arora, M. Sharma, and T. O. Tollefsbol, Int. J. Mol. Sci., 20 (18), 4567 (2019).
  8. F. Islam, M. H. Nafady, M. R. Islam, et al., Mol. Neurobiol., 59, 4384 (2022).
  9. S. A. Almatroodi, M. A. Alsahli, A. S. M. Aljohani, et al., Molecules, 27, 2665 (2022).
  10. A. Kumar, B. D. Kurmi, A. Singh, and D. Singh, Exploration of Targeted Anti-Tumor Therapy, 3, 643 (2022).
  11. D. Fan, C. Liu, Z. Zhang, et al., Molecules, 27 (21), 7524 (2022).
  12. P. Pan, J. Li, W. Lin, and G. Long, Intervirology, 65, 206 (2022).
  13. K. I. Kirsanov, O. A. Vlasova, T. I. Fetisov, et al., Adv. Mol. Oncol. (In Russian), 5 (4), 41 (2018).
  14. L. X. Zhang, C. X. Li, M. U. Kakar, et al., Biomed. Pharmacotherapy, 143, 112164 (2021).
  15. A. Shaito, A. M. Posadino, N. Younes, et al., Int. J. Mol. Sci., 21, 2084 (2020).
  16. K. T. Howitz, K. J. Bitterman, H. Y. Cohen, et al., Nature, 425, 191 (2003).
  17. S. A. Gatz and L. Wiesmuller, Carcinogenesis, 29, 321 (2008).
  18. S. Zhang, X. Sun, Z. Jing, and F. Qu, Spectrochim. Acta. Part A: Mol. Biomol. Spectroscopy, 82, 213 (2011).
  19. C. N. N'Soukpoe-Kossi, P. Bourassa, J. S. Mandeville, et al., J. Photochem. Photobiol. B: Biology, 151, 69 (2015).
  20. S. Kumar, P. Kumar, and M. S. Nair, Spectrochim. Acta. Part A - Mol. Biomol. Spectroscopy, 252, 119488 (2021).
  21. C. Ji, X. Yin, H. Duan, and L. Liang, Int. J. Biol. Macromolecules, 168, 775 (2021).
  22. O. I. Kulaeva, D. A. Gaykalova, N. A. Pestov, et al., Nature Struct. Mol. Biol., 16, 1272 (2009).
  23. A. Thastrom, P. T. Lowary, H. R. Widlund, et al., J. Mol. Biol., 288, 213 (1999).
  24. N. V. Malyuchenko, D. O. Koshkina, A. N. Korovina, et al., Moscow Univ. Biol. Sci. Bull., 75, 142 (2020).
  25. A. V. Lyubitelev, M. S. Mikhaylova, N. V. Maluchenko, et al., Moscow Univ. Biol. Sci. Bull., 71, 108 (2016).
  26. Н. С. Герасимова, А. Н. Коровина, Д. А. Афонин и др., Биофизика, 67, 222 (2022).
  27. K. S. Kudryashova, O. V. Chertkov, Y. O. Ivanov, et al., Moscow Univ. Biol. Sci. Bull., 71, 97 (2016).
  28. D. A. Gaykalova, O. I. Kulaeva, V. A. Bondarenko, and V. M. Studitsky, Methods Mol. Biol., 523, 109 (2009).
  29. N. V. Maluchenko, D. K. Nilov, S. V. Pushkarev, et al., Int. J. Mol. Sci., 22 (22), 12127 (2021).
  30. K. S. Kudryashova, O. V. Chertkov, D. V. Nikitin, et al., Methods Mol. Biol., 1288, 395 (2015).
  31. T. Andreeva, A. Lyubitelev, E. Bondarenko, et al., Microscopy and Microanalysis, 27, 1740 (2021).
  32. M. S. Nair, S. D'Mello, R. Pant, and K. M. Poluri, J. Photochem. Photobiol. B: Biology, 170, 217 (2017).
  33. B. Demoulin, M. Hermant, C. Castrogiovanni, et al., Toxicology in vitro, 29, 1156 (2015).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies