On the interaction of resveratrol with nucleosomes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The natural polyphenol resveratrol has anti-inflammatory, antioxidant, antitumor and geroprotective properties. The wide range of resveratrol activities is determined by its ability to modulate a variety of signaling pathways in the cell and interact with various target molecules. It is known that resveratrol interacts with DNA, but the effect of this interaction on the structure of chromatin has not been studied. In this work, we studied the effect of resveratrol on the structure of the nucleosome, the functional and structural unit of chromatin. Fluorescent microscopy of single nucleosomes based on Forster resonance energy transfer and analysis of changes in the electrophoretic mobility of nucleosomes in polyacrylamide gel showed that, at a concentration of ~100 μM, resveratrol affects the conformation of DNA linker regions, limits the conformational dynamics of DNA near the nucleosome boundary, but does not cause significant changes in the folding of nucleosomal DNA on the histone octamer. A small effect of resveratrol on the structure of the nucleosome compared to quercetin is presumably determined by the binding mode of resveratrol in a minor groove of DNA.

Sobre autores

N. Maluchenko

Lomonosov Moscow State University

Email: mal_nat@mail.ru
Moscow, Russia

T. Andreeva

Lomonosov Moscow State University

Moscow, Russia

O. Geraskina

Lomonosov Moscow State University

Moscow, Russia

N. Gerasimova

Lomonosov Moscow State University

Moscow, Russia

A. Lubitelev

Lomonosov Moscow State University

Moscow, Russia

A. Feofanov

Lomonosov Moscow State University

Moscow, Russia

V. Studitsky

Lomonosov Moscow State University;Fox Chase Cancer Center

Moscow, Russia;Philadelphia, USA

Bibliografia

  1. S. Tangutoori, P. Baldwin, and S. Sridhar, Maturitas, 81 (1), 5 (2015).
  2. M. Jhanji, C. N. Rao, and M. Sajish, GeroScience, 43, 1171 (2021).
  3. R. Pangeni, J. K. Sahni, J. Ali, et al., Expert Opin. Drug Deliv., 11, 1285 (2014).
  4. B. Tian and J. Liu, J. Sci. Food Agricult., 100, 1392 (2020).
  5. L. Bavaresco, Drugs Exp. Clin. Res., 29, 181 (2003).
  6. D. Delmas, A. Lancon, D. Colin, et al., Curr. Drug Targets, 7, 423 (2006).
  7. I. Arora, M. Sharma, and T. O. Tollefsbol, Int. J. Mol. Sci., 20 (18), 4567 (2019).
  8. F. Islam, M. H. Nafady, M. R. Islam, et al., Mol. Neurobiol., 59, 4384 (2022).
  9. S. A. Almatroodi, M. A. Alsahli, A. S. M. Aljohani, et al., Molecules, 27, 2665 (2022).
  10. A. Kumar, B. D. Kurmi, A. Singh, and D. Singh, Exploration of Targeted Anti-Tumor Therapy, 3, 643 (2022).
  11. D. Fan, C. Liu, Z. Zhang, et al., Molecules, 27 (21), 7524 (2022).
  12. P. Pan, J. Li, W. Lin, and G. Long, Intervirology, 65, 206 (2022).
  13. K. I. Kirsanov, O. A. Vlasova, T. I. Fetisov, et al., Adv. Mol. Oncol. (In Russian), 5 (4), 41 (2018).
  14. L. X. Zhang, C. X. Li, M. U. Kakar, et al., Biomed. Pharmacotherapy, 143, 112164 (2021).
  15. A. Shaito, A. M. Posadino, N. Younes, et al., Int. J. Mol. Sci., 21, 2084 (2020).
  16. K. T. Howitz, K. J. Bitterman, H. Y. Cohen, et al., Nature, 425, 191 (2003).
  17. S. A. Gatz and L. Wiesmuller, Carcinogenesis, 29, 321 (2008).
  18. S. Zhang, X. Sun, Z. Jing, and F. Qu, Spectrochim. Acta. Part A: Mol. Biomol. Spectroscopy, 82, 213 (2011).
  19. C. N. N'Soukpoe-Kossi, P. Bourassa, J. S. Mandeville, et al., J. Photochem. Photobiol. B: Biology, 151, 69 (2015).
  20. S. Kumar, P. Kumar, and M. S. Nair, Spectrochim. Acta. Part A - Mol. Biomol. Spectroscopy, 252, 119488 (2021).
  21. C. Ji, X. Yin, H. Duan, and L. Liang, Int. J. Biol. Macromolecules, 168, 775 (2021).
  22. O. I. Kulaeva, D. A. Gaykalova, N. A. Pestov, et al., Nature Struct. Mol. Biol., 16, 1272 (2009).
  23. A. Thastrom, P. T. Lowary, H. R. Widlund, et al., J. Mol. Biol., 288, 213 (1999).
  24. N. V. Malyuchenko, D. O. Koshkina, A. N. Korovina, et al., Moscow Univ. Biol. Sci. Bull., 75, 142 (2020).
  25. A. V. Lyubitelev, M. S. Mikhaylova, N. V. Maluchenko, et al., Moscow Univ. Biol. Sci. Bull., 71, 108 (2016).
  26. Н. С. Герасимова, А. Н. Коровина, Д. А. Афонин и др., Биофизика, 67, 222 (2022).
  27. K. S. Kudryashova, O. V. Chertkov, Y. O. Ivanov, et al., Moscow Univ. Biol. Sci. Bull., 71, 97 (2016).
  28. D. A. Gaykalova, O. I. Kulaeva, V. A. Bondarenko, and V. M. Studitsky, Methods Mol. Biol., 523, 109 (2009).
  29. N. V. Maluchenko, D. K. Nilov, S. V. Pushkarev, et al., Int. J. Mol. Sci., 22 (22), 12127 (2021).
  30. K. S. Kudryashova, O. V. Chertkov, D. V. Nikitin, et al., Methods Mol. Biol., 1288, 395 (2015).
  31. T. Andreeva, A. Lyubitelev, E. Bondarenko, et al., Microscopy and Microanalysis, 27, 1740 (2021).
  32. M. S. Nair, S. D'Mello, R. Pant, and K. M. Poluri, J. Photochem. Photobiol. B: Biology, 170, 217 (2017).
  33. B. Demoulin, M. Hermant, C. Castrogiovanni, et al., Toxicology in vitro, 29, 1156 (2015).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies