Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 82, No 8 (2017)

Review

Components of the hepatocellular carcinoma microenvironment and their role in tumor progression

Novikova M.V., Khromova N.V., Kopnin P.B.

Abstract

This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.

Biochemistry (Moscow). 2017;82(8):861-873
pages 861-873 views

Glycation, glycolysis, and neurodegenerative diseases: Is there any connection?

Muronetz V.I., Melnikova A.K., Seferbekova Z.N., Barinova K.V., Schmalhausen E.V.

Abstract

This review considers the interrelation between different types of protein glycation, glycolysis, and the development of amyloid neurodegenerative diseases. The primary focus is on the role of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase in changing the concentration of carbonyl compounds – first and foremost, glyceraldehyde-3-phosphate and methylglyoxal. It has been suggested that various modifications of the enzyme – from the oxidation of the sulfhydryl groups of the active site to glycation with sugars – can lead to its inactivation, which causes a direct increase in glyceraldehyde-3-phosphate concentration and an indirect increase in the content of other aldehydes. This “primary inactivation” of glyceraldehyde-3-phosphate dehydrogenase promotes its glycation with aldehydes, including its own substrate, and a further irreversible decrease in its activity. Such a cycle can lead to numerous consequences – from the induction of apoptosis, which is activated by modified forms of the enzyme, to glycation of amyloidogenic proteins by glycolytic aldehydes. Of particular importance during the inhibition of glyceraldehyde-3-phosphate dehydrogenase is an increase in the content of the glycating compound methylglyoxal, which is much more active than reducing sugars (glucose, fructose, and others). In addition, methylglyoxal is formed by two pathways – in the cascade of reactions during glycation and from glycolytic aldehydes. The ability of methylglyoxal to glycate proteins makes it the main participant in this protein modification. We consider the effect of glycation on the pathological transformation of amyloidogenic proteins and peptides – β-amyloid peptide, α-synuclein, and prions. Our primary focus is on the glycation of monomeric forms of these proteins with methylglyoxal, although most works are dedicated to the analysis of the presence of “advanced glycation end products” in the already formed aggregates and fibrils of amyloid proteins. In our opinion, the modification of aggregates and fibrils is secondary in nature and does not play an important role in the development of neurodegenerative diseases. The glycation of amyloid proteins with carbonyl compounds can be one of the triggers of their transformation into toxic forms. The possible role of glycation of amyloidogenic proteins in the prevention of their modification by ubiquitin and the SUMO proteins due to a disruption of their degradation is separately considered.

Biochemistry (Moscow). 2017;82(8):874-886
pages 874-886 views

Mini-Review

PDX1: A unique pancreatic master regulator constantly changes its functions during embryonic development and progression of pancreatic cancer

Vinogradova T.V., Sverdlov E.D.

Abstract

Multifunctional activity of the PDX1 gene product is reviewed. The PDX1 protein is unique in that being expressed exclusively in the pancreas it exhibits various functional activities in this organ both during embryonic development and during induction and progression of pancreatic cancer. Hence, PDX1 belongs to the family of master regulators with multiple and often antagonistic functions.

Biochemistry (Moscow). 2017;82(8):887-893
pages 887-893 views

Article

Intracellular localization of apoptotic endonuclease EndoG and splice-variants of telomerase catalytic subunit hTERT

Aleksandrova S.S., Sokolov N.N., Zhdanov D.D., Pokrovsky V.S., Orlova E.V., Orlova V.S., Pokrovskaya M.V.

Abstract

The activity of telomerase catalytic subunit hTERT (human telomerase reverse transcriptase) can be regulated by alternative splicing of its mRNA. The mechanism of hTERT splicing is not understood in detail. Apoptotic endonuclease EndoG is known to participate in this process. In the present work, the intracellular colocalization and mRNA levels of EndoG and hTERT splice-variants in normal and apoptotic cancer cells were studied. We found that the development of apoptosis increased the expression of EndoG and changed the ratio of hTERT splice-variants, which decreased the telomerase activity in the cells. The development of apoptosis was accompanied by changes in the amount of mRNA and in the localization of EndoG and hTERT splice-variants in the cytoplasm, nuclei, and mitochondria of the cells. The suppression of EndoG expression using RNA interference prevented induction of the α+β–splice-variant of hTERT and inhibition of the telomerase activity. A high degree of the intracellular colocalization of EndoG and hTERT was shown. The changes in the expression and localization of EndoG corresponded with changes in the amount and localization of hTERT splice-variants. These data confirm the participation of EndoG in the alternative splicing of mRNA of the telomerase catalytic subunit and in regulation of the telomerase activity.

Biochemistry (Moscow). 2017;82(8):894-905
pages 894-905 views

Femtosecond relaxation processes in Rhodobacter sphaeroides reaction centers

Yakovlev A.G., Shuvalov V.A.

Abstract

Energy relaxation was studied with difference femtosecond spectroscopy in reaction centers of the YM210L mutant of the purple photosynthetic bacterium Rhodobacter sphaeroides at low temperature (90 K). A dynamical long-wavelength shift of stimulated emission of the excited state of the bacteriochlorophyll dimer P was found, which starts simultaneously with P* formation and is accompanied by a change in the spectral shape of this emission. The characteristic value of this shift was about 30 nm, and the characteristic time about 200 fs. Difference kinetics ΔA measured at fixed wavelengths demonstrate the femtosecond shift of the P* stimulated emission appearing as a dependence of these kinetics on wavelength. We found that the reported long-wavelength shift can be explained in terms of electron-vibrational relaxation of the P* excited state with time constants of vibrational and electronic relaxation of 100 and 50 fs, respectively. Alternative mechanisms of the dynamical shift of the P* stimulated emission spectrum are also discussed in terms of energy redistribution between vibrational modes or coherent excitation of the modes.

Biochemistry (Moscow). 2017;82(8):906-915
pages 906-915 views

Loss of melanin by eye retinal pigment epithelium cells is associated with its oxidative destruction in melanolipofuscin granules

Dontsov A.E., Sakina N.L., Ostrovsky M.A.

Abstract

The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.

Biochemistry (Moscow). 2017;82(8):916-924
pages 916-924 views

Structural insight into interaction between C20 phenylalanyl derivative of tylosin and ribosomal tunnel

Makarov G.I., Sumbatyan N.V., Bogdanov A.A.

Abstract

Macrolides are clinically important antibiotics that inhibit protein biosynthesis on ribosomes by binding to ribosomal tunnel. Tylosin belongs to the group of 16-membered macrolides. It is a potent inhibitor of translation whose activity is largely due to reversible covalent binding of its aldehyde group with the base of A2062 in 23S ribosomal RNA. It is known that the conversion of the aldehyde group of tylosin to methyl or carbinol groups dramatically reduces its inhibitory activity. However, earlier we obtained several derivatives of tylosin having comparable activity in spite of the fact that the aldehyde group of tylosin in these compounds was substituted with an amino acid or a peptide residue. Details of the interaction of these compounds with the ribosome that underlies their high inhibitory activity were not known. In the present work, the structure of the complex of tylosin derivative containing in position 20 the residue of ethyl ester of 2-imino(oxy)acetylphenylalanine with the tunnel of the E. coli ribosome was identified by means of molecular dynamics simulations, which could explain high biological activity of this compound.

Biochemistry (Moscow). 2017;82(8):925-932
pages 925-932 views

Nigericin inhibits epithelial ovarian cancer metastasis by suppressing the cell cycle and epithelial−mesenchymal transition

Wang W., Zhao Y., Yao S., Cui X., Pan W., Huang W., Gao J., Dong T., Zhang S.

Abstract

Epithelial ovarian cancer (EOC) has the highest mortality among various types of gynecological malignancies. Most patients die of metastasis and recurrence due to cisplatin resistance. Thus, it is urgent to develop novel therapies to cure this disease. CCK-8 assay showed that nigericin exhibited strong cytotoxicity on A2780 and SKOV3 cell lines. Flow cytometry indicated that nigericin could induce cell cycle arrest at G0/G1 phase and promote cell apoptosis. Boyden chamber assay revealed that nigericin could inhibit migration and invasion in a dose-dependent manner by suppressing epithelial–mesenchymal transition (EMT) in EOC cells. These effects were mediated, at least partly, by the Wnt/β-catenin signaling pathway. Our results demonstrated that nigericin could inhibit EMT during cell invasion and metastasis through the canonical Wnt/β-catenin signaling pathway. Nigericin may prove to be a novel therapeutic strategy that is effective in patients with metastatic EOC.

Biochemistry (Moscow). 2017;82(8):933-941
pages 933-941 views

SkQ1 regulates expression of Nrf2, ARE-controlled genes encoding antioxidant enzymes, and their activity in cerebral cortex under oxidative stress

Vnukov V.V., Gutsenko O.I., Milyutina N.P., Kornienko I.V., Ananyan A.A., Plotnikov A.A., Panina S.B.

Abstract

The administration of SkQ1 to rats at the dose of 50 nmol/kg for five days significantly increased the mRNA levels of transcription factor Nrf2 and of Nrf2-controlled genes encoding antioxidant enzymes SOD1, SOD2, CAT, and GPx4, whereas changes in the level of mRNA of SOD3 in the cerebral cortex of the rat brain were not significant. This was accompanied by activation of antioxidant enzymes (SOD, CAT, GPx, and GST) and increase in reduced glutathione concentration. Under oxidative stress induced by hyperoxia (0.5 MPa for 90 min), the mRNA level of transcription factor Nrf2 decreased, whereas changes in the transcriptional activity of Nrf2-induced genes (SOD1-3, CAT, GPx4) encoding antioxidant enzymes in the cortex of the rat brain hemispheres were insignificant. Under conditions of hyperoxia, lipid peroxidation intensity was increased, CAT was inhibited, and GST activity was moderately increased, whereas SOD and GPx activities in the rat brain cerebral cortex remained at the stationary level. Pretreatment with SkQ1 before the exposure to hyperbaric oxygenation led to an increase in mRNA level of transcription factor Nrf2 and of Nrf2-induced genes (SOD1-2, CAT, and GPx4) encoding antioxidant enzymes, whereas SOD3 expression in the cerebral cortex of the rat brain under oxidative stress was not changed. Concurrently, we observed an increase in activities of these antioxidant enzymes (SOD, CAT, GPx, and GST) and in level of reduced glutathione. We hypothesize that the protective effect of SkQ1 under hyperoxia-induced oxidative stress could be realized via direct antioxidant activity and through stimulation of the signaling defense system Keap1/Nrf2/ARE.

Biochemistry (Moscow). 2017;82(8):942-952
pages 942-952 views

Inhibition of Escherichia coli inorganic pyrophosphatase by fructose-1-phosphate

Vorobyeva N.N., Kurilova S.A., Anashkin V.A., Rodina E.V.

Abstract

Pyrophosphate regulates vital cellular reactions, and its level in E. coli cells is under the ultimate control of inorganic pyrophosphatase. The mechanisms involved in the regulation of pyrophosphatase activity still need to be elucidated. The present study demonstrated that fructose-1-phosphate inhibits pyrophosphatase activity by a mechanism not involving competition with substrate for binding to the active site. The inhibition constant governing the binding of the inhibitor to the enzyme–substrate complex is 1.1 mM. Substitutions of Lys112, Lys115, Lys148, and Arg43 in the regulatory site completely or partially abolished the inhibition. Thus, Fru-1-P is a physiological inhibitor of pyrophosphatase that acts via a regulatory site in this enzyme.

Biochemistry (Moscow). 2017;82(8):953-956
pages 953-956 views

Glutamic acid as enhancer of protein synthesis kinetics in hepatocytes from old rats

Brodsky V.Y., Malchenko L.A., Butorina N.N., Lazarev (Konchenko) D.S., Zvezdina N.D., Dubovaya T.K.

Abstract

Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell–cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell–cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

Biochemistry (Moscow). 2017;82(8):957-961
pages 957-961 views

Quantitative analysis of L1-retrotransposons in Alzheimer’s disease and aging

Protasova M.S., Gusev F.E., Grigorenko A.P., Kuznetsova I.L., Rogaev E.I., Andreeva T.V.

Abstract

LINE1 retrotransposons are members of a class of mobile genetic elements capable of retrotransposition in the genome via a process of reverse transcription. LINE1 repeats, integrating into different chromosomal loci, affect the activity of genes and cause different genomic mutations. Somatic variability of the human genome is linked to the activity of some subfamilies of LINE1, in particular, a high level of LINE1 retrotranspositions has been observed in brain tissues. However, the contribution of LINE1 to genomic variability during normal aging and in age-related neurodegenerative diseases is poorly understood. We conducted quantitative real-time PCR analysis of active subfamilies of LINE1 repeats (aL1) using genomic DNA extracted from brain specimens of Alzheimer’s disease (AD) patients and individuals without neuropsychiatric pathologies, as well as DNA extracted from blood specimens of individuals of different ages (healthy and AD subjects). Inter-individual quantitative variations of active families of aL1 repeats in the genome were observed. No significant age-dependent differences were identified. Likewise, no difference of aL1 copy number in brain and blood were indicated between AD patients and the aged-matched control group without dementia. These data imply that aging and the AD-associated neurodegenerative process are not the major factors contributing to the retrotransposition processes of active LINE1 repeats.

Biochemistry (Moscow). 2017;82(8):962-971
pages 962-971 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies