Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method
- Авторлар: Nazin A.V.1, Nemirovsky A.S.2, Tsybakov A.B.3, Juditsky A.B.4
-
Мекемелер:
- Trapeznikov Institute of Control Sciences
- Georgia Institute of Technology
- CREST, ENSAE
- Université Grenoble Alpes
- Шығарылым: Том 80, № 9 (2019)
- Беттер: 1607-1627
- Бөлім: Topical Issue
- URL: https://journals.rcsi.science/0005-1179/article/view/151156
- DOI: https://doi.org/10.1134/S0005117919090042
- ID: 151156
Дәйексөз келтіру
Аннотация
We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.
Авторлар туралы
A. Nazin
Trapeznikov Institute of Control Sciences
Хат алмасуға жауапты Автор.
Email: anazine@ipu.ru
Ресей, Moscow
A. Nemirovsky
Georgia Institute of Technology
Хат алмасуға жауапты Автор.
Email: nemirovs@isye.gatech.edu
АҚШ, Atlanta, Georgia
A. Tsybakov
CREST, ENSAE
Хат алмасуға жауапты Автор.
Email: alexandre.tsybakov@ensae.fr
Франция, Paris
A. Juditsky
Université Grenoble Alpes
Хат алмасуға жауапты Автор.
Email: anatoli.juditsky@univ-grenoble-alpes.fr
Франция, Grenoble
Қосымша файлдар
