Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method
- 作者: Nazin A.V.1, Nemirovsky A.S.2, Tsybakov A.B.3, Juditsky A.B.4
-
隶属关系:
- Trapeznikov Institute of Control Sciences
- Georgia Institute of Technology
- CREST, ENSAE
- Université Grenoble Alpes
- 期: 卷 80, 编号 9 (2019)
- 页面: 1607-1627
- 栏目: Topical Issue
- URL: https://journals.rcsi.science/0005-1179/article/view/151156
- DOI: https://doi.org/10.1134/S0005117919090042
- ID: 151156
如何引用文章
详细
We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.
作者简介
A. Nazin
Trapeznikov Institute of Control Sciences
编辑信件的主要联系方式.
Email: anazine@ipu.ru
俄罗斯联邦, Moscow
A. Nemirovsky
Georgia Institute of Technology
编辑信件的主要联系方式.
Email: nemirovs@isye.gatech.edu
美国, Atlanta, Georgia
A. Tsybakov
CREST, ENSAE
编辑信件的主要联系方式.
Email: alexandre.tsybakov@ensae.fr
法国, Paris
A. Juditsky
Université Grenoble Alpes
编辑信件的主要联系方式.
Email: anatoli.juditsky@univ-grenoble-alpes.fr
法国, Grenoble
补充文件
