Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.

作者简介

A. Nazin

Trapeznikov Institute of Control Sciences

编辑信件的主要联系方式.
Email: anazine@ipu.ru
俄罗斯联邦, Moscow

A. Nemirovsky

Georgia Institute of Technology

编辑信件的主要联系方式.
Email: nemirovs@isye.gatech.edu
美国, Atlanta, Georgia

A. Tsybakov

CREST, ENSAE

编辑信件的主要联系方式.
Email: alexandre.tsybakov@ensae.fr
法国, Paris

A. Juditsky

Université Grenoble Alpes

编辑信件的主要联系方式.
Email: anatoli.juditsky@univ-grenoble-alpes.fr
法国, Grenoble

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019