Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method
- Autores: Nazin A.V.1, Nemirovsky A.S.2, Tsybakov A.B.3, Juditsky A.B.4
-
Afiliações:
- Trapeznikov Institute of Control Sciences
- Georgia Institute of Technology
- CREST, ENSAE
- Université Grenoble Alpes
- Edição: Volume 80, Nº 9 (2019)
- Páginas: 1607-1627
- Seção: Topical Issue
- URL: https://journals.rcsi.science/0005-1179/article/view/151156
- DOI: https://doi.org/10.1134/S0005117919090042
- ID: 151156
Citar
Resumo
We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.
Sobre autores
A. Nazin
Trapeznikov Institute of Control Sciences
Autor responsável pela correspondência
Email: anazine@ipu.ru
Rússia, Moscow
A. Nemirovsky
Georgia Institute of Technology
Autor responsável pela correspondência
Email: nemirovs@isye.gatech.edu
Estados Unidos da América, Atlanta, Georgia
A. Tsybakov
CREST, ENSAE
Autor responsável pela correspondência
Email: alexandre.tsybakov@ensae.fr
França, Paris
A. Juditsky
Université Grenoble Alpes
Autor responsável pela correspondência
Email: anatoli.juditsky@univ-grenoble-alpes.fr
França, Grenoble
Arquivos suplementares
