Entropy-robust randomized forecasting under small sets of retrospective data


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper suggests a new randomized forecasting method based on entropy-robust estimation for the probability density functions (PDFs) of random parameters in dynamic models described by the systems of linear ordinary differential equations. The structure of the PDFs of the parameters and measurement noises with the maximal entropy is studied. We generate the sequence of random vectors with the entropy-optimal PDFs using a modification of the Ulam–von Neumann method. The developed method of randomized forecasting is applied to the world population forecasting problem.

Авторлар туралы

Yu. Popkov

Institute for Systems Analysis; Moscow Institute of Physics and Technology (National Research University); Higher School of Economics (National Research University)

Хат алмасуға жауапты Автор.
Email: popkov@isa.ru
Ресей, Moscow; Moscow; Moscow

Yu. Dubnov

Institute for Systems Analysis; Moscow Institute of Physics and Technology (National Research University)

Email: popkov@isa.ru
Ресей, Moscow; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016