Entropy-robust randomized forecasting under small sets of retrospective data


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper suggests a new randomized forecasting method based on entropy-robust estimation for the probability density functions (PDFs) of random parameters in dynamic models described by the systems of linear ordinary differential equations. The structure of the PDFs of the parameters and measurement noises with the maximal entropy is studied. We generate the sequence of random vectors with the entropy-optimal PDFs using a modification of the Ulam–von Neumann method. The developed method of randomized forecasting is applied to the world population forecasting problem.

作者简介

Yu. Popkov

Institute for Systems Analysis; Moscow Institute of Physics and Technology (National Research University); Higher School of Economics (National Research University)

编辑信件的主要联系方式.
Email: popkov@isa.ru
俄罗斯联邦, Moscow; Moscow; Moscow

Yu. Dubnov

Institute for Systems Analysis; Moscow Institute of Physics and Technology (National Research University)

Email: popkov@isa.ru
俄罗斯联邦, Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016