Deep Learning Model Selection of Suboptimal Complexity
- Авторы: Bakhteev O.Y.1, Strijov V.V.1,2
-
Учреждения:
- Moscow Institute of Physics and Technology
- Dorodnicyn Computing Centre
- Выпуск: Том 79, № 8 (2018)
- Страницы: 1474-1488
- Раздел: Optimization, System Analysis, and Operations Research
- URL: https://journals.rcsi.science/0005-1179/article/view/150990
- DOI: https://doi.org/10.1134/S000511791808009X
- ID: 150990
Цитировать
Аннотация
We consider the problem of model selection for deep learning models of suboptimal complexity. The complexity of a model is understood as the minimum description length of the combination of the sample and the classification or regression model. Suboptimal complexity is understood as an approximate estimate of the minimum description length, obtained with Bayesian inference and variational methods. We introduce probabilistic assumptions about the distribution of parameters. Based on Bayesian inference, we propose the likelihood function of the model. To obtain an estimate for the likelihood, we apply variational methods with gradient optimization algorithms. We perform a computational experiment on several samples.
Ключевые слова
Об авторах
O. Bakhteev
Moscow Institute of Physics and Technology
Автор, ответственный за переписку.
Email: bakhteev@phystech.edu
Россия, Moscow
V. Strijov
Moscow Institute of Physics and Technology; Dorodnicyn Computing Centre
Email: bakhteev@phystech.edu
Россия, Moscow; Moscow
Дополнительные файлы
