Deep Learning Model Selection of Suboptimal Complexity


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the problem of model selection for deep learning models of suboptimal complexity. The complexity of a model is understood as the minimum description length of the combination of the sample and the classification or regression model. Suboptimal complexity is understood as an approximate estimate of the minimum description length, obtained with Bayesian inference and variational methods. We introduce probabilistic assumptions about the distribution of parameters. Based on Bayesian inference, we propose the likelihood function of the model. To obtain an estimate for the likelihood, we apply variational methods with gradient optimization algorithms. We perform a computational experiment on several samples.

Авторлар туралы

O. Bakhteev

Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: bakhteev@phystech.edu
Ресей, Moscow

V. Strijov

Moscow Institute of Physics and Technology; Dorodnicyn Computing Centre

Email: bakhteev@phystech.edu
Ресей, Moscow; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018