Deep Learning Model Selection of Suboptimal Complexity
- Авторлар: Bakhteev O.Y.1, Strijov V.V.1,2
- 
							Мекемелер: 
							- Moscow Institute of Physics and Technology
- Dorodnicyn Computing Centre
 
- Шығарылым: Том 79, № 8 (2018)
- Беттер: 1474-1488
- Бөлім: Optimization, System Analysis, and Operations Research
- URL: https://journals.rcsi.science/0005-1179/article/view/150990
- DOI: https://doi.org/10.1134/S000511791808009X
- ID: 150990
Дәйексөз келтіру
Аннотация
We consider the problem of model selection for deep learning models of suboptimal complexity. The complexity of a model is understood as the minimum description length of the combination of the sample and the classification or regression model. Suboptimal complexity is understood as an approximate estimate of the minimum description length, obtained with Bayesian inference and variational methods. We introduce probabilistic assumptions about the distribution of parameters. Based on Bayesian inference, we propose the likelihood function of the model. To obtain an estimate for the likelihood, we apply variational methods with gradient optimization algorithms. We perform a computational experiment on several samples.
Негізгі сөздер
Авторлар туралы
O. Bakhteev
Moscow Institute of Physics and Technology
							Хат алмасуға жауапты Автор.
							Email: bakhteev@phystech.edu
				                					                																			                												                	Ресей, 							Moscow						
V. Strijov
Moscow Institute of Physics and Technology; Dorodnicyn Computing Centre
														Email: bakhteev@phystech.edu
				                					                																			                												                	Ресей, 							Moscow; Moscow						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					