Deep Learning Model Selection of Suboptimal Complexity
- Autores: Bakhteev O.Y.1, Strijov V.V.1,2
- 
							Afiliações: 
							- Moscow Institute of Physics and Technology
- Dorodnicyn Computing Centre
 
- Edição: Volume 79, Nº 8 (2018)
- Páginas: 1474-1488
- Seção: Optimization, System Analysis, and Operations Research
- URL: https://journals.rcsi.science/0005-1179/article/view/150990
- DOI: https://doi.org/10.1134/S000511791808009X
- ID: 150990
Citar
Resumo
We consider the problem of model selection for deep learning models of suboptimal complexity. The complexity of a model is understood as the minimum description length of the combination of the sample and the classification or regression model. Suboptimal complexity is understood as an approximate estimate of the minimum description length, obtained with Bayesian inference and variational methods. We introduce probabilistic assumptions about the distribution of parameters. Based on Bayesian inference, we propose the likelihood function of the model. To obtain an estimate for the likelihood, we apply variational methods with gradient optimization algorithms. We perform a computational experiment on several samples.
Palavras-chave
Sobre autores
O. Bakhteev
Moscow Institute of Physics and Technology
							Autor responsável pela correspondência
							Email: bakhteev@phystech.edu
				                					                																			                												                	Rússia, 							Moscow						
V. Strijov
Moscow Institute of Physics and Technology; Dorodnicyn Computing Centre
														Email: bakhteev@phystech.edu
				                					                																			                												                	Rússia, 							Moscow; Moscow						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					