METHOD FOR DETERMINING THE PARAMETERS OF A RING-LIKE STRUCTURE FROM THE VISIBILITY FUNCTION SHAPE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Black hole images obtained by very long baseline interferometry (VLBI) by the Event Horizon Telescope are a new tool for testing general relativity in super-strong gravitational fields. These images demonstrated a ring-like structure which can be explained as the black hole shadow image. To date, there are no reliable methods for determining the parameters of these ring-like structures, such as diameter, width, and asymmetry. In this paper, an algorithm for determining black hole image parameters is proposed using a Gaussian asymmetric ring as an example. Using the proposed method, the diameter and asymmetry parameters of the image of a supermassive black hole in the galaxy M87 were estimated based on observational data obtained by the Event Horizon Telescope group.

About the authors

S. V. Chernov

Astro Space Center, P. N. Lebedev Physical Institute, Russian Academy of Sciences

Email: chernov@td.lpi.ru
Moscow, Russia

M. A. Shchurov

Astro Space Center, P. N. Lebedev Physical Institute, Russian Academy of Sciences

Moscow, Russia

I. I. Bulygin

Astro Space Center, P. N. Lebedev Physical Institute, Russian Academy of Sciences

Moscow, Russia

A. G. Rudnitskiy

Astro Space Center, P. N. Lebedev Physical Institute, Russian Academy of Sciences

Moscow, Russia

References

  1. Event Horizon Telescope Collaboration: K. Akiyama, A. Alberdi, W. Alef, K. Asada, et al., Astrophys. J. Letters 875(1), id. L1 (2019), arXiv:1906.11238 [astro-ph.GA].
  2. Event Horizon Telescope Collaboration: K. Akiyama, A. Alberdi, W. Alef, J.C. Algaba, et al., Astrophys. J. Letters 930(2), id. L12 (2022).
  3. Event Horizon Telescope Collaboration: K. Akiyama, A. Alberdi, W. Alef, K. Asada, et al., Astrophys. J. Letters 875(1), id. L6 (2019), arXiv:1906.11243 [astro-ph.GA].
  4. Event Horizon Telescope Collaboration: K. Akiyama, A. Alberdi, W. Alef, J.C. Algaba, et al., Astrophys. J. Letters 930(2), id. L15 (2022).
  5. I.D. Novikov, S.F. Likhachev, Y.A. Shchekinov, A.S. Andrianov, et al., Physics Uspekhi 64(4), 386 (2021).
  6. X. Hong, Z. Shen, T. An, and Q. Liu, Acta Astronautica 102, 217 (2014).
  7. F. Roelofs, H. Falcke, C. Brinkerink, M. Mocibrodzka, et al., Astron. and Astrophys. 625, id. A124 (2019).
  8. L.I. Gurvits, Z. Paragi, V. Casasola, J. Conway, et al., Exp. Astron. 51(3), 559 (2021).
  9. V. Kudriashov, M. Martin-Neira, F. Roelofs, H. Falcke, et al., Chin. J. Space Sci. 41(02), 211 (2021).
  10. V. Kudriashov, M. Martin-Neira, I. Barat, P.M. Iglesias, E. Daganzo-Eusebio, N. Alagha, and V. Valenta, arXiv:2105.06901 [astro-ph.IM] (2021).
  11. P. Kurczynski, M.D. Johnson, S.S. Doeleman, K. Haworth, et al., in Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, edited by L.E. Coyle, S. Matsuura, and M.D. Perrin, Proc. of SPIE 12180, id. 121800M (2022).
  12. S. Trippe, T. Jung, J.-W. Lee, W. Kang, et al., arXiv:2304.06482 [astro-ph.IM] (2023).
  13. A.G. Rudnitskiy, M.A. Shchurov, S.V. Chernov, T.A. Syachina, and P.R. Zapevalin, Acta Astronautica 212, 361 (2023), arXiv:2305.19072 [astro-ph.IM].
  14. M.D. Johnson, A. Lupsasca, A. Strominger, G.N. Wong, et al., Science Advances 6(12), eaaz1310 (2020), arXiv:1907.04329 [astro-ph.IM].
  15. P. Tiede, M.D. Johnson, D.W. Pesce, D.C.M. Palumbo, D.O. Chang, and P. Galison, Galaxies 10(6), id. 111 (2022), arXiv:2210.13498 [astro-ph.HE].
  16. A.R. Thompson, J.M. Moran, and G.W. Swenson, Jr., Interferometry and Synthesis in Radio Astronomy, 3rd Edition (Springer, 2017).
  17. S.V. Chernov, J. Experim. Theor. Phys. 132(6), 897 (2021).
  18. A. Andrianov, S. Chernov, I. Girin, S. Likhachev, A. Lyakhovets, and Y. Shchekinov, Phys. Rev. D 105(6), id. 063015 (2022), arXiv:2203.00577 [astro-ph.HE].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).