Диагностическое значение некоторых показателей азотного режима почв для оценки экологического состояния нефтезагрязненных почв
- Авторы: Герасимов А.О.1, Поляк Ю.М.1, Бакина Л.Г.1
-
Учреждения:
- Федеральный исследовательский центр РАН
- Выпуск: № 1 (2025)
- Страницы: 66-74
- Раздел: Экотоксикология
- URL: https://journals.rcsi.science/0002-1881/article/view/285117
- DOI: https://doi.org/10.31857/S0002188125010084
- EDN: https://elibrary.ru/VCJRCA
- ID: 285117
Цитировать
Аннотация
Рассмотрены результаты исследований азотного режима загрязненных нефтью почв за последние годы. Подчеркнута недостаточная изученность данного вопроса для техногенных почв, несмотря на то что загрязнение почвы нефтью и нефтепродуктами может вызвать значительные изменения в круговороте азота и привести к необратимым нарушениям экологических функций почв. Обобщение результатов исследований позволило выявить наиболее информативные показатели для оценки процессов азотного режима и экологического состояния нефтезагрязненных почв. В условиях нефтяного загрязнения в почве возрастает соотношение содержания углерода и азота, снижается нитрифицирующая активность почв, относительно увеличивается доля аммонийных форм азота. Показано, что нарушения процессов азотного цикла, содержания и соотношения содержаний разных форм азота, характеризующих определенные стадии его превращения в почве, могут восстанавливаться в различной степени при рекультивации в зависимости от свойств почвы. В настоящий момент наиболее перспективными направлениями исследований процессов азотного цикла в нефтезагрязненных почвах являются: изучение жизнедеятельности почвенных микроорганизмов, осуществляющих различные стадии процессов азотного цикла, взаимосвязи структуры и разнообразия микробиоты со скоростью процессов биодеструкции нефти и трансформации азотных соединений в загрязненных почвах. Изучение процессов азотного цикла имеет важное значение для оценки последствий загрязнения почв нефтепродуктами и выбора наиболее эффективных стратегий их восстановления.
Ключевые слова
Полный текст

Об авторах
А. О. Герасимов
Федеральный исследовательский центр РАН
Автор, ответственный за переписку.
Email: recchi@rambler.ru
Санкт-Петербургский научно-исследовательский центр экологической безопасности РАН
Россия, 197110 Санкт-Петербург, Корпусная ул., 18Ю. М. Поляк
Федеральный исследовательский центр РАН
Email: recchi@rambler.ru
Санкт-Петербургский научно-исследовательский центр экологической безопасности РАН
Россия, 197110 Санкт-Петербург, Корпусная ул., 18Л. Г. Бакина
Федеральный исследовательский центр РАН
Email: recchi@rambler.ru
Санкт-Петербургский научно-исследовательский центр экологической безопасности РАН
Россия, 197110 Санкт-Петербург, Корпусная ул., 18Список литературы
- Кузина В.Д., Антонова И.Н., Наполова Г.В., Наполов В.В. Динамика легкогидролизуемого азота под ячменем // Использование генетических ресурсов сельскохозяйственных растений в современном земледелии: сб. научн.-практ. конф. молод. ученых. Орел: Орел ГАУ, 2012. С. 265–266.
- Завалин А.А., Соколов О.А., Шмырева Н.Я. Азот в агросистеме на черноземных почвах. М.: РАН, 2018. 180 с.
- Чекин Г.В., Смольский Е.В. Агрохимические свойства почв опытного поля Брянского ГАУ // Вестн. Брянск. ГСХА. 2022. С. 31–37.
- Nutrient cycling in terrestrial ecosystems / Eds. P. Marschner, Z. Rengel. Berlin, Heidelberg: Springer, 2007. 397 р.
- Филиппова Л.С. Круговорот азота и его соединений в почве // Международ. научн.-исслед. журн. 2023. № 8(134). С. 5.
- Рагимов И.И. Содержание и формы азота в почве // Школа науки. 2021. № 5(42). С. 58–59.
- Lawlor D.W., Lemaire G., Gastal F. Nitrogen, plant growth and crop yield // Plant Nitrogen / Еds. Lea P.J., Morot-Gaudry J.F. Berlin, Heidelberg: Springer, 2001. Р. 369–378.
- Кудеяров В.Н. Почвенно-биогеохимические аспекты состояния земледелия в Российской Федерации // Почвоведение. 2019. № 1. С. 109–121.
- Hofman G., Van Cleemput O. Soil and plant nitrogen. Paris, France, September 2004. International Fertilizer Industry Association, 48 p.
- Лямкина Ю.Б., Хворова Л.А. Моделирование динамики азота в почве (теоретические аспекты) // Изв. АлтайГУ. 2011. № 1–2(69). C. 94–97.
- Васильченко Н.И. Агрогенная трансформация азота в почвах северного Казахстана // Вестн. АлтайГАУ. 2014. № 6. C. 67–71.
- Hachiya T., Sakakibara H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants // J. Exp. Bot. 2017. V. 68. Iss. 10. P. 2501–2512.
- Таракановский А. Минеральный азот в почве. URL: https://direct.farm/post/mineralnyy-azot-v-pochve-17471 (дата обращения: 27.04.2023).
- Попова Е.Н., Семенов С.М. Влияние антропогенного азота на продуктивность сельскохозяйственных растений // Пробл. экол. мониторинга и моделирования экосистем. 2003. Т. 19. С. 180–199.
- Heil J., Vereecken H., Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil // Europ. J. Soil Sci. 2016. 67. Р. 23–39.
- Задорожний А.Н., Семенов М.В., Ходжаева А.К., Семенов В.М. Почвенные процессы продукции, потребления и эмиссии парниковых газов // Агрохимия. 2010. № 10. С. 75–92.
- Paśmionka I.B., Bulski K., Boligłowa E. The participation of microbiota in the transformation of nitrogen compounds in the soil – a review // Agronomy. 2021. № 11(5). Р. 977.
- Robertson G.P., Groffman P.M. Chapter 14 – Nitrogen transformations // Soil Microbiology, Ecology and Biochemistry. 2024. P. 407–438.
- Hayatsu M., Tago K., Saito M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification // Soil Sci. Plant Nutr. 2008. V. 54. Iss. 1. P. 33–45.
- Ollivier J., Töwe S., Bannert A., Hai B., Kastl E.-M., Meyer A., Su M.X., Kleineidam K., Schloter M. Nitrogen turnover in soil and global change // FEMS Microbiol. Ecol. 2011. V. 78. Iss. 1. P. 3–16.
- Ribeiro H., Mucha A.P., Azevedo I., Salgado P., Teixeira C., Almeida C.M.R., Joye S.B., Magalhães C. Differential effects of crude oil on denitrification and anammox, and the impact on N2O production // Environ. Pollut. 2016. 216. Р. 391–399.
- Zhao M.Y., Wang S., Li F.M., Guo S.H., Gao P. Soil oil pollution and its microbial community characteristics in Liaohe oilfield // J. Appl. Ecol. 2020. № 31(12). Р. 4215–4224.
- Raimi M.O., Ilesanmi A., Ogah A., Omini D.E. Exploring how human activities disturb the balance of biogeochemical cycles: evidence from the carbon, nitrogen and hydrologic cycles // Res. World Agricult. Econom. 2021. № 2(3). Р. 23–44.
- Федорова Т.Н., Синиговец М.Е., Саранин Е.К., Кузьмич М.А. Экологические проблемы при углеводородном загрязнении, самоочищение и реабилитация почв // Экология. 2011. № 2. 17 с.
- Liu H., Wu M., Gao H., Gao J., Wang S. Application of 15N tracing and bioinformatics for estimating microbial-mediated nitrogen cycle processes in oil-contaminated soils // Environ. Res. 2023. V. 217. Р. 114799.
- Chukwu E.Ch., Azuka Ch.V., Okorie B.O. Effects of different levels of spent engine oil on soil physicochemical properties using different texturally contrasting soils. 2022. doi: 10.21203/rs.3.rs-2231711/v1
- Uquetan U.I., Osang J.E., Egor A.O., Essoka P.A., Alozie S.I., Bawan A.M. A case study of the effects of oil pollution on soil properties and growth of tree crops in Cross River State, Nigeria // Inter. Res. J. Pure Appl. Physics. 2017. V. 5. 2. Р. 19–28.
- Obasi N.A., Eze E., Anyanwu D.I., Okorie U.C. Effects of organic manures on the physicochemical properties of crude oil polluted soils // Afric. J. Biochem. Res. 2013. V. 7(6). Р. 67–75.
- de Jong E. The effect of a crude oil spill on cereals // Environ. Pollut. Ser. A. Ecol. Biol. 1980. V. 22. Iss. 3. P. 187–196.
- Wyszkowski M., Wyszkowska J., Borowik A., Kordala N. Contamination of soil with diesel oil, application of sewage sludge and content of macroelements in oats // Water Air Soil Pollut. 2020. V. 231. Р. 546.
- Akpan G.U., Udoh B.T. Evaluation of some properties of soils affected by diesel oil pollution in Uyo, Niger delta area, Nigeria // J. Biol. Agricult. Healthcare. 2013. V. 3. № 8. Р. 33–42.
- Barua D., Buragohain J., Sarma S.K. Certain physic-chemical changes in the soil brought about by contamination of crude oil in two oil fields of Assam, NE India // Europ. J. Exp. Biol. 2011. № 1(3). Р. 154–161.
- Осипова Р.А., Равзутдинов А.Р., Гилязов М.Ю., Кужамбердиева С.Ж. Трансформация агрохимических свойств серой лесной почвы под действием нефти в зависимости от уровня и давности загрязнения // Плодородие. 2020. № 3(114). С. 55–60.
- John R.C., Ntino E.S., Itah A.Y. Impact of crude oil on soil nitrogen dynamics and uptake by legumes grown in wetland ultisol of the Niger delta, Nigeria // J. Environ. Protect. 2016. № 07(04). Р. 507–515.
- Назарюк В.М., Калимуллина Ф.Р. Роль удобрений в азотном питании растений при загрязнении почвы нефтью // Агрохимия. 2020. № 4. С. 76–84.
- Булуктаев А.А., Сангаджиева Л.Х., Даваева Ц.Д. Изменение эколого-биологических свойств светло-каштановых почв Калмыкии при нефтяном загрязнении // Изв. Саратов. ун-та. Сер. Химия. Биология. Экология. 2013. Т. 13. Вып. 1. С. 102–107.
- Kucharski J., Tomkiel M., Boros E., Wyszkowska J. The effect of soil contamination with diesel oil and petrol on the nitrification process // J. Elementol. 2010. № 15(1). Р. 111–118.
- Швец А.А. Фиторемедиация загрязненных нефтью почв в условиях Северо-Западного Кавказа: Автореф. дис. … канд. с.-х. наук. Краснодар, 2009. 20 с.
- Amadi A., Abbey S.D., Nma A. Chronic effects of oil spil on soil properties and microflora of rainforest ecosystem in Nigeria // Water Air Soil Pollut. 1996. V. 86. Р. 1–11.
- Niewolak S., Koziello M. Intensity of some nitrogen transformations in soils experimentally contaminated with crude oil // Pol. J. Environ. Stud. 1998. № 7(3). Р. 161–168.
- Wyszkowski M., Ziolkowska A. Relationship between petrol and diesel oil contamination versus mineral nitrogen content in soil following application of compost, bentonite and calcium oxide // Ecol. Сhem. Еngin. 2009. V. 16. № 8.
- Ерофеевская Л.А., Глязнецова Ю.С., Чалая О.Н. Использование дернообразующих растений в биоремедиации нефтезагрязненных мерзлотных почв // Усп. совр. естествознания. 2012. № 11. Ч. 1. С. 128–129.
- Смирнова Т.С., Панина Ю.Ю. Мониторинг углеводородного загрязнения почвы посредством анализа ее ферментативной активности // Защита окруж. среды в нефтегаз. комплексе. 2015. № 12. С. 33–38.
- Schutte C.A., Marton J.M., Bernhard A.E. No evidence for long-term impacts of oil spill contamination on salt marsh soil nitrogen cycling processes // Estuaries and Coasts. 2020. V. 43. P. 865–879.
- Liu H., Wu M., Zhang M., Gao H., Yan Z., Yang Z. New insight into the effect of nitrogen on hydrocarbon degradation in petroleum-contaminated soil revealed through 15N tracing and flow cytometry // Sci. Total. Environ. 2023. V. 891. P. 164409.
- Фатеев А.И., Мирошниченко Н.Н., Панасенко Е.В., Христенко С.И. Изменение агрохимических и микробиологических свойств нефтезагрязненного чернозема в рекультивационный период // Агрохимия. 2004. № 6. С. 53–60.
- Kucharski J., Jastrzebska E., Wyszkowska J. Effects of some oil products on the course of ammonification and nitrification // Acta Agr. Silv. Ser. Agr. 2004. V. 42. Р. 249–255.
- Баландина А.В., Жилкин С.М., Кузнецов Д.Б., Дубровина С.С. Восстановительная способность нефтезагрязненных почв при использовании различных препаратов // Совр. пробл. науки и образ-я. 2015. № 5. C. 42–48.
- Essien O.E., John I.A.J. Impact of crude-oil spillage pollution and chemical remediation on agricultural soil properties and crop growth // Appl. Sci. Environ. Manage. 2010. V. 14(4). Р. 147–154.
- Li H., Zhang Y., Kravchenko I., Xu H., Zhang C. Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: a laboratory experiment // J. Environ. Sci. 2007. 19. Р. 1003–1013.
- Colla T.S., Andreazza R., Bücker F., de Souza M.M., Tramontini L., Prado G.R., Frazzon A.P.G., de Oliveira Camargo F.A., Bento F.M. Bioremediation assessment of diesel-biodiesel-contaminated soil using an alternative bioaugmentation strategy // Environ. Sci. Pollut. Res. 2014. V. 21(4). Р. 2592–2602.
- Bouman A.F., Van Drecht G., Van der Hoek K.W. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970–2030 // Pedosphere. 2005. V. 15. P. 137–155.
- Rochette P., Angers D.A., Chantigny M.H., Gasser M.O., MacDonald J.D., et al. NH3 volatilization, soil NH4 concentration and soil pH following subsurface banding of urea at increasing rates // Canad. J. Soil Sci. 2013. V. 93. P. 261–268.
- Jahangir M.M.R., Fenton O., Carolan R., Harrington R., Johnston P., Zaman M., Richards K.G., Müller C. Application of 15N tracing for estimating nitrogen cycle processes in soils of a constructed wetland // Water Res. 2020. V. 183. P. 116062.
- Li Y., Wang C., Wu J., Zhang Y., Li Q., Liu S., Gao Y. The Effects of localized plant–soil–microbe interactions on soil nitrogen cycle in maize rhizosphere soil under long-term fertilizers // Agronomy. 2023. V. 13(8). P. 2114.
- Gao Y., Yuan L., Du J., Wang H., Yang X., Duan L., Zheng L., Bahar M.M., Zhao Q., Zhang W., Liu Y., Fu Z., Wang W., Naidu R. Bacterial community profile of the crude oil-contaminated saline soil in the Yellow River Delta Natural Reserve, China // Chemosphere. 2022. V. 289. P. 133207.
- Siles J.A., Margesin R. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site // Appl. Microbiol. Biotechnol. 2018. V. 102(10). Р. 4409–4421.
- Sun Y., Ding A., Zhao X., Chang W., Ren L., Zhao Y., Song Z., Hao D., Liu Y., Jin N., Zhang D. Response of soil microbial communities to petroleum hydrocarbons at a multi-contaminated industrial site in Lanzhou, China // Chemosphere. 2022. V. 306. Р. 135559.
- Zhang X., Kong D., Liu X., Xie H., Lou X., Zeng C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. // Chemosphere. 2021. V. 273. Р. 129666.
- Polyak Y.M., Bakina L.G., Mayachkina N.V., Chugunova M.V., Bityutskii N.P., Yakkonen K.L., Shavarda A.L. Long-term effects of oil contamination on soil quality and metabolic function // Environ. Geochem. Health. 2023. doi: 10.1007/s10653-023-01779-2
Дополнительные файлы
