Participation of jasmonic acid in the long-distance signalling from roots to shoots of peas plants under saliny
- Authors: Akhiyarova G.R.1, Vafina G.K.1, Korobova A.V.1, Ivanov I.I.1, Giniyatullin A.R.1,2, Gaffarova E.R.1,2, Garipova M.I.2, Kudoyarova G.R.1
-
Affiliations:
- Ufa Federal Research Center of the RAS
- Ufa University of Science and Technology
- Issue: No 1 (2025)
- Pages: 47-54
- Section: Plant growth regulators
- URL: https://journals.rcsi.science/0002-1881/article/view/285107
- DOI: https://doi.org/10.31857/S0002188125010062
- EDN: https://elibrary.ru/VCLTSS
- ID: 285107
Cite item
Abstract
Jasmonic acid (JA) and its derivatives are involved in the adaptation of plants to biotic and abiotic stresses, including salinization. However, there is insufficient information about the role of JA in the transmission of signals from organ to organ under the local action of abiotic factors. The signaling role of JA in connection with the reaction of shoots to salinization of the root environment of pea plants has been studied. The results of the effect of salinization on changes in the content of JA in the growing and conducting zones of roots and xylem sap, as well as the localization of JA and abscisic acid (AA) in the leaves of stressed plants due to changes in their transpiration level are presented. The content and localization of JA in leaves and roots of plants were evaluated by immunohistochemical method using specific antibodies. The purpose of this study is to check whether salinity-induced changes in the concentration of JA in roots and xylem sap can explain the accumulation of these hormones in leaves and related transpiration changes.
Keywords
Full Text

About the authors
G. R. Akhiyarova
Ufa Federal Research Center of the RAS
Author for correspondence.
Email: akhiyarova@rambler.ru
Ufa Institute of Biology
Russian Federation, prosp. October 69, Ufa 450054, BashkortostanG. Kh. Vafina
Ufa Federal Research Center of the RAS
Email: akhiyarova@rambler.ru
Ufa Institute of Biology
Russian Federation, prosp. October 69, Ufa 450054, BashkortostanA. V. Korobova
Ufa Federal Research Center of the RAS
Email: akhiyarova@rambler.ru
Ufa Institute of Biology
Russian Federation, prosp. October 69, Ufa 450054, BashkortostanI. I. Ivanov
Ufa Federal Research Center of the RAS
Email: akhiyarova@rambler.ru
Ufa Institute of Biology
Russian Federation, prosp. October 69, Ufa 450054, BashkortostanA. R. Giniyatullin
Ufa Federal Research Center of the RAS; Ufa University of Science and Technology
Email: akhiyarova@rambler.ru
Ufa Institute of Biology
Russian Federation, prosp. October 69, Ufa 450054, Bashkortostan; ul. Zaki Validi 32, Ufa 450076, BashkortostanE. R. Gaffarova
Ufa Federal Research Center of the RAS; Ufa University of Science and Technology
Email: akhiyarova@rambler.ru
Ufa Institute of Biology
Russian Federation, prosp. October 69, Ufa 450054, Bashkortostan; ul. Zaki Validi 32, Ufa 450076, BashkortostanM. I. Garipova
Ufa University of Science and Technology
Email: akhiyarova@rambler.ru
Russian Federation, ul. Zaki Validi 32, Ufa 450076, Bashkortostan
G. R. Kudoyarova
Ufa Federal Research Center of the RAS
Email: akhiyarova@rambler.ru
Ufa Institute of Biology
Russian Federation, prosp. October 69, Ufa 450054, BashkortostanReferences
- El. Sabagh A., Islam M.S., Skalicky M., Ali Raza M., Singh K., Anwar Hossain M., Hossain A., Mahboob W., Iqbal M.A., Ratnasekera D., Singhal R.K., Ahmed S., Kumari A., Wasaya A., Sytar O., Brestic M., ÇIG F., Erman M., Habib Ur Rahman M., Ullah N., Arshad A. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies // Front. Agron. 2021. V. 3. P. 661932. doi: 10.3389/fagro.2021.661932
- Navarro-Torre S., Garcia-Caparrós P., Nogales A., Abreu M.M., Santos E., Cortinha A.L., Caperta A.D. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies // Environ. Exp. Bot. 2023. V. 212. P. 105397. doi: 10.1016/j.envexpbot.2023.105397
- Lucas W.J., Groover A., Lichtenberger R., Furuta K., Yadav S.R., Helariutta Y., He X.Q., Fukuda H., Kang J., Brady S.M., Patrick J.W., Sperry J., Yoshida A., López-Millán A.-F., Grusak M.A., Kachroo P. The plant vascular system: Evolution, development and functions // J. Integr. Plant Biol. 2013. V. 55. P. 294–388. doi: 10.1111/jipb.12041
- Jackson M. Hormones from roots as signals for the shoots of stressed plants // Trends Plant Sci. 1997. V. 2. P. 22–28. doi: 10.1016/S1360-1385(96)10050-9
- Davies W.J., Zhang J. Root signals and the regulation of growth and development of plants in drying soil // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991. V. 42. P. 55–76. doi: 10.1146/annurev.pp.42.060191.000415
- Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany // Ann. Bot. 2013. V. 111. P. 1021–1058. doi: 10.1093/aob/mct067
- Lacombe B., Achard P. Long-distance transport of phytohormones through the plant vascular system // Curr. Opin. Plant Biol. 2016. V. 34. P. 1–8. https://doi.org/10.1016/j.pbi.2016.06.007
- Ali M.S., Baek K.-H. Jasmonic acid signaling pathway in response to abiotic stresses in plants // Inter. J. Mol. Sci. 2020. V. 21(2). P. 621, doi: 10.3390/ijms21020621
- Li M., Wang F., Li S., Yu G., Wang L., Li Q., Zhu X., Li Z., Yuan L., Liu P. Importers drive leaf-to-leaf jasmonic acid transmission in wound-induced systemic immunity // Mol. Plant. 2020. V. 13. P. 1485–1498. doi: 10.1016/j.molp.2020.08.017
- Abouelsaad I., Renault S. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress // J. Plant Physiol. 2018. V. 226. P. 136–144. doi: 10.1016/j.jplph.2018.04.009
- Ahmad B., Raina A., Naikoo M.I., Khan S. Role of methyl jasmonates in salt stress tolerance in crop plants // Plant Signal. Mol. Amsterdam, The Netherlands: Elsevier, 2019. P. 371–384. doi: 10.1016/B978-0-12-816451-8.00023-X
- Liu H.R., Sun G.W., Dong L.J., Yang L.Q., Yu S.N., Zhang S.L., Liu J.F. Physiological and molecular responses to drought and salinity in soybean // Biol. Plant. 2017. V. 61. P. 557–564. doi: 10.1007/s10535-017-0703-1
- Akhiyarova G., Vafina G., Veselov D., Kudoyarova G. Immunolocalization of jasmonates and auxins in pea roots in connection with inhibition of root growth under salinity conditions // Inter. J. Mol. Sci. 2023. V. 24. P. 15148. https://doi.org/10.3390/ijms242015148
- Delgado C., Mora-Poblete F., Ahmar S., Chen J.T., Figueroa C.R. Jasmonates and plant salt stress: Molecular players, physiological effects, and improving tolerance by using genome-associated tools // Inter. J. Mol. Sci. 2021. V. 22. P. 3082. doi: 10.3390/ijms22063082
- Kang D.-J., Seo Y.-J., Lee J.D., Ishii R., Kim K., Shin D., Park S., Jang S., Lee I.-J. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars // J. Agron. Crop Sci. 2005. V. 191. P. 273–282. doi: 10.1111/j.1439-037X.2005.00153.x
- Yoon J.Y., Hamayun M., Lee S.-K., Lee I.-J. Methyl jasmonate alleviated salinity stress in soybean // J. Crop. Sci. Biotechnol. 2009. V. 12. P. 63–68. doi: 10.1007/s12892-009-0060-5
- Javid M.G., Sorooshzadeh A., Moradi F., Modarres Sanavy S.A.M., Allahdadi I. The role of phytohormones in alleviating salt stress in crop plants // Aust. J. Crop. Sci. 2011. V. 5. P. 726–734.
- Fricke W., Akhiyarova G., Veselov D., Kudoyarova G. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves // J. Exp. Bot. 2004. V. 55. P. 1115–1123. https://doi.org/10.1093/jxb/erh117
- Förster S., Schmidt L.K., Kopic E., Anschütz U., Huang S., Schlücking K., Köster P., Waadt R., Larrieu A., Batistič O., Rodriguez P.L., Grill E., Kudla J., Becker D. Wounding-induced stomatal closure requires jasmonate-mediated activation of gork K+ channels by a Ca2+sensor-kinase CBL1-CIPK5 complex // Dev. Cell. 2019. V. 48. P. 87–99. doi: 10.1016/j.devcel.2018.11.014
- De Ollas C., Arbona V., Gómez-Cadenas A., Dodd I.C. Attenuated accumulation of jasmonates modifies stomatal responses to water deficit // J. Exp. Bot. 2018. V. 69. P. 2103–2116. doi: 10.1093/jxb/ery045
- Veselov S.U., Kudoyarova G.R., Egutkin N.L., Gyuli Zade V.G., Mustafina A.R., Kof E.K. Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid // Physiol. Plant. 1992. V. 86. P. 93–96.
- Korobova A., Ivanov R., Timergalina L., Vysotskaya L., Nuzhnaya T., Akhiyarova G., Kusnetsov V., Veselov D., Kudoyarova G. Effect of low light stress on distribution of auxin (indole-3-acetic acid) between shoot and roots and development of lateral roots in barley plants // Biology. 2023. V. 12. P. 787. doi: 10.3390/biology12060787
- Akhiyarova G.R., Ivanov R.S., Ivanov I.I., Finkina E.I., Melnikova D.N., Bogdanov I.V., Nuzhnaya T., Ovchinnikova T.V., Veselov D.S., Kudoyarova G.R. Effects of salinity and abscisic acid on lipid transfer protein accumulation, suberin deposition and hydraulic conductance in pea roots // Membranes. 2021. V. 11. P. 762. doi: 10.3390/membranes11100762
- Passioura J.B., Munns R. Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate // Austral. J. Plant Physiol. 2000. V. 27. P. 941–948.
- Agurla S., Gahir Sh., Munemasa Sh., Murata Y., Raghavendra A.S. Mechanism of stomatal closure in plants exposed to drought and cold stress // Adv. Exp. Med. Biol. 2018. V. 1081. P. 215–232. doi: 10.1007/978-981-13-1244-1_1
- Ахиярова Г.Р., Фрике В., Веселов Д.С., Кудоярова Г.Р., Веселов С.Ю. Накопление и распределение АБК в тканях листа при кратковременном действии засоления указывает на ее роль в регуляции устьичной проводимости // Цитология. 2006. Т. 48(11). С. 918–923.
- Шарипова Г.В., Иванов Р.С., Высоцкая Л.Б., Ахиярова Г.Р. Влияние засоления на устьичную и гидравлическую проводимость, а также на уровень аквапоринов в клетках листьев растений ячменя, различающихся по солеустойчивости // Biomics. 2021. V. 13(3). P. 280–287. doi: 10.31301/2221-6197.bmcs.2021-19
- Zabadal T.J. A water potential threshold for the increase of abscisic acid in leaves // Plant. Physiol. 1974. V. 53. P. 125–127. doi: 10.1104/pp.53.1.125
- Valenzuela C.E., Acevedo-Acevedo O., Miranda G.S., Vergara-Barros P., Holuigue L., Figueroa C.R., Figueroa R.M. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root // J. Exp. Bot. 2016. V. 67. P. 4209–4220. doi: 10.1093/jxb/erw202
- Sack L., John G.P., Buckley T.N. ABA Accumulation in dehydrating leaves is associated with decline in cell volume, not turgor pressure // Plant Physiol. 2018. V. 176. P. 489–495. doi: 10.1104/pp.17.01097
Supplementary files
