Optimal dose of phosphorus fertilizers for grain agrocenoses in Ob region

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The need to intensify the agricultural sector to ensure the food security of the growing population of the planet against the background of depletion of natural sources of phosphorous raw materials leads to an increase in the costs of agricultural producers for phosphorus fertilizers (PF), which increases the urgency of the problem of optimizing the doses of the latter. Based on the generalization of the results of long-term field experiments, the economic and environmental validity of different approaches to calculating doses of PF for cereals in the Ob region was compared. The study was conducted in 2006–2017 in long-term experiments of the SFNCA RAS on leached medium loamy medium humus chernozem in the Central forest steppe of the Ob region (54°53ʹ13.5ʺ n. w., 82°59ʹ36.7ʺ e. l.). Calculations were performed based on the results of observations in 3 crop rotations: 3-field grain-fallow (fallow–wheat–wheat), in 4-field grain-fallow (fallow–wheat–wheat–barley), in 4-field grain-fallow (fallow–wheat–wheat–wheat). The duration of the experiments was 18, 23, 38 years, respectively. The experiments were carried out against the background of nitrogen fertilizers with a complete scheme of plant protection from harmful organisms. A high agronomic efficiency of PF application has been established: the increase in grain yield with the use of P15–P30 averaged 0.5–1.2 t/ha. Phosphorus removal by the grain harvest (its alienation from the field) in the control variants was ≈20 kg P2O5/ha of the crop area, in the variants with fertilization it reached 30 kg/ha. Its removal by aboveground biomass was 1.6 times greater and reached 48 kg/ha. The phosphorus balance in the soil in the variants of experiments without the introduction of PF was deficient (–15…–27 kg/ha), with the introduction of P15 its deficit was –11 kg/ha, with a dose of P30 the balance was positive, i. e. the phosphorus intake was excessive. Two indicators were considered as evidence of excess doses of PF >P30 for grain agrocenoses in the forest steppe of the Ob region: accumulation of mobile mineral phosphorus in the soil and an increase in the fraction of enzymatically available phosphorus, these pools can become a source of phosphorus losses from agrocenosis. It is concluded that for the leached chernozem of the Ob region, the calculation of doses of phosphorus fertilizers based on the amount of phosphorus alienation by the grain harvest is more justified from an economic and environmental point of view in comparison with the calculation based on the amount of removal of the element by the entire aboveground (grain + straw) biomass of plants.

Texto integral

Acesso é fechado

Sobre autores

S. Kolbin

Siberian Federal Scientific Centre of Agrobiotechnologies of the RAS

Email: Danilova7alb@yandex.ru
Rússia, ul. Centralnaya 26, Novosibirsk district, Krasnoobsk 630501

A. Danilova

Siberian Federal Scientific Centre of Agrobiotechnologies of the RAS

Autor responsável pela correspondência
Email: Danilova7alb@yandex.ru
Rússia, ul. Centralnaya 26, Novosibirsk district, Krasnoobsk 630501

A. Rakhlenko

Siberian Federal Scientific Centre of Agrobiotechnologies of the RAS

Email: Danilova7alb@yandex.ru
Rússia, ul. Centralnaya 26, Novosibirsk district, Krasnoobsk 630501

Bibliografia

  1. Van Vuuren D.P., Bouwman A.F., Beusen A.H. Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion // Global Environ. Change. 2010. V. 20(3). P. 428–439.https://doi.org/10.1016/j.gloenvcha.2010.04.004
  2. Yu X., Keitel C., Dijkstra F.A. Global analysis of phosphorus fertilizer use efficiency in cereal crops // Global Food Secur. 2021. V. 29. 100545. https://doi.org/10.1016/j.gfs.2021.100545
  3. Gu Yu., Ros G.H., Zhu Q., Zheng D., Shen J., Cai Z., Xu M., de Vries W. Responses of total, reactive and dissolved phosphorus pools and crop yields to long-term fertilization // Agricult. Ecosyst. Environ. 2023. V. 357. 108658.doi: 10.1016/j.agee.2023.108658
  4. Li B., Ng S.J., Han J.-C., Li M., Zeng J., Guo D., Zhou Y., He Z., Wu X., Huang Y. Network evolution and risk assessment of the global phosphorus trade // Sci. Total Environ. 2023. V. 860. № 20. 160433. https://doi.org/10.1016/j.scitotenv.2022.160433
  5. Tilman D., Balzer C., Hill J., Befort B.L. Global food demand and the sustainable intensification of agriculture // Proc. Nat. Acad. Sci. USA. 2011. V. 08(50). P. 20260–20264. https://doi.org/10.1073/pnas.1116437108
  6. Jagdeep-Singh, Gobinder-Singh, Gupta N. Balancing phosphorus fertilization for sustainable maize yield and soil test phosphorus management: A long-term study using machine learning // Field Crops Res. 2023. V. 304. 109169. https://doi.org/10.1016/j.fcr.2023.109169
  7. Hu W., Li C.-H., Ye C., Wang J., Wei W.-W., Deng Y. Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database // Ecol. Model. 2019. V. 410. 108779. https://doi.org/10.1016/j.ecolmodel.2019.108779
  8. Сычев В.Г. Современное состояние плодородия почв и основные аспекты его регулирования. М.: РАН, 2019. 328 с.
  9. Муравин Э.А. Агрохимия: учебник и учеб. пособ для студ сред. учеб. завед. М.: КолосС, 2004. 384 с.
  10. Кирюшин В.И. Минеральные удобрения как ключевой фактор развития сельского хозяйства и оптимизации природопользования // Достиж. науки и техн. АПК. 2016. Т. 30. № 3. С. 19–25.
  11. Смирнов П.М., Муравин Э.А. Агрохимия: учеб-к для вузов. М.: Колос, 1977. 240 с.
  12. Каренгина Л.Б., Байкенова Ю.Г. К методике расчета комплексного агрохимического окультуривания полей // Аграрн. вестн. Урала. 2016. № 8(150). С. 31–37.
  13. Сычев В.Г., Шафран С.А., Виноградова С.Б. Плодородие почв России и пути его регулирования // Агрохимия. 2020. № 6. С. 3–13.
  14. Реестр длительных стационарных полевых опытов ГНУ СО Россельхозакадемии. Новосибирск: ИИЦ ЦНСХБСО РАСХН, 2009. 287 с.
  15. Сорокин О.Д. Прикладная статистика на компьютере. Новосибирск: СО РАСХН, 2008. 217 с.
  16. Агрохимические методы исследования почв. М.: Наука, 1975. 656 с.
  17. Берхин Ю.И., Чагина Е.Г. Одновременное определение азота нитратов и фосфора в солевой (0.03 н. К2SО4) вытяжке // Агрохимия. 1983. № 1. С. 119–121
  18. Куркаев В.Т. Ускоренное определение азота, фосфора и калия в растениях из одной навески // Почвоведение. 1959. № 9. С. 114–117.
  19. Методика расчета баланса элементов питания в земледелии Республики Беларусь. Минск: БНИВНФХ в АПК, 2007. 24 с.
  20. Данилова А.А. Оптимальные дозы фосфорных удобрений (к почвенно-биохимическим аспектам проблемы) // Сибир. вестн. с.-х. науки. 2019. № 49(3). C. 5–15. https://doi.org/10.26898/0370-8799-2019-3-1
  21. О ходе приобретения минеральных удобрений в 2020 г. и планы по приобретению до 2025 г. М.: / Минсельхоз РФ, 2020. [Электр. ресурс]. URL: https://mcx.gov.ru/upload/iblock/4a5/4a5e8900ca37701862e106b46d2f0abe.pdf (дата обращения: 10.07.2023).
  22. Волынкин В.И., Копылов А.Н., Волынкина О.В. Влияние минеральных удобрений на урожайность культур и агрохимические свойства выщелоченного чернозема // Плодородие. 2014. № 6. С. 14–16.
  23. Волынкина О.В., Волынкин В.И., Кириллова Е.В., Копылов А.Н. Системы удобрения в агротехнологиях Зауралья. Куртамыш: ООО “Куртамышская типография”, 2017. 284 с.
  24. Храмцов И.Ф. Агрохимические аспекты управления плодородием черноземных почв равнинных ландшафтов Западной Сибири // Агрохимические свойства почвы и приемы их регулирования: Мат-лы Международ. научн.-практ. конф. IV Сибирских агрохимических Прянишниковских чтений (Иркутск, 16–21 июля 2007 г.). Новосибирск: РАСХН, СО, 2009. С. 23–33.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».