Comparative study of the effect of moderate and strong sodium chloride salinization on growth and photosynthetic apparatus of cultivated cereals
- 作者: Taskina K.B.1, Kaznina N.M.1, Titov A.F.1
-
隶属关系:
- Karelian Research Centre of RAS
- 期: 编号 11 (2024)
- 页面: 47-55
- 栏目: Agroecology
- URL: https://journals.rcsi.science/0002-1881/article/view/263156
- DOI: https://doi.org/10.31857/S0002188124110073
- EDN: https://elibrary.ru/ahmpdq
- ID: 263156
如何引用文章
详细
In a controlled environment, the effect of moderate (100 mM) and strong (200 mM) sodium chloride salinity on seed germination, seedling growth and the state of the photosynthetic apparatus (PSA) of barley (Hordeum vulgare L.) varieties Nur and wheat (Triticum aestivum L.) varieties Zlata was studied. It was found that with moderate salinization, the seeds of both species successfully germinated, but the growth of shoots and the accumulation of aboveground biomass were inhibited, which was partly due to a slowdown in the rate of photosynthesis. With strong salinity, distinct interspecific differences were observed in the response of plants. In particular, the number of germinated seeds decreased in barley, while in wheat it remained at the control level. In barley, shoot growth was inhibited to a greater extent, whereas in wheat, the accumulation of aboveground biomass was. The content of pigments in barley plants decreased, and the content of wheat increased. At the same time, stomatal conductivity decreased in both species and the rate of photosynthesis slowed down. It is concluded that based on the energy of germination and germination of seeds, it is possible to determine the salt resistance of species only to a high level of salinity (200 mM NaCl). Morphometric indicators of shoot growth make it possible to assess the resistance of plants to salinity already at lower salt concentrations (100 mM NaCl). For a more accurate comparative assessment of the salt resistance of species (varieties, varietals, genotypes) of cereals, not one, but several indicators should be used, reflecting not only the growth potential of plants, but also photosynthetic activity.
全文:

作者简介
K. Taskina
Karelian Research Centre of RAS
编辑信件的主要联系方式.
Email: tasamayaksenia@gmail.com
Institute of Biology
俄罗斯联邦, Pushkinskaya ul. 11, Petrozavodsk 185910N. Kaznina
Karelian Research Centre of RAS
Email: tasamayaksenia@gmail.com
Institute of Biology
俄罗斯联邦, Pushkinskaya ul. 11, Petrozavodsk 185910A. Titov
Karelian Research Centre of RAS
Email: tasamayaksenia@gmail.com
Institute of Biology
俄罗斯联邦, Pushkinskaya ul. 11, Petrozavodsk 185910参考
- The State of food and agriculture (FAO) 2021. Making agrifood systems more resilient to shocks and stresses. Rome: FAO, 2021. doi: 10.4060/cb4476en
- Butcher K., Wick A., DeSutter T., Chatterjee A., Harmon J. Soil salinity: a threat to global food security // Agron. J. 2016. V. 108. № 6. p. 2189–2200. doi: 10.2134/agronj2016.06.0368
- Stavi I., Thevs N., Priori S. Soil salinity and sodicity in drylands: a review of causes, effects, monitoring, and restoration measures // Front. Environ. Sci. 2021. № 9. P. 712831. doi: 10.3389/fenvs.2021.712831
- Balasubramaniam T., Shen G., Esmaeili N., Zhang H. Plants’ response mechanisms to salinity stress // Plants. 2023. V. 12. № 12. P. 2253. doi: 10.3390/plants12122253
- Uçarlı C. Effects of salinity on seed germination and early seedling stage // Abiotic Stress Plants. Istanbul: IntechOpen, 2021. doi: 10.5772/intechopen.93647
- Zhang X., Long Y., Chen X., Zhang B., Xin Y., Li L., Cao S., Liu F., Wang Z., Huang H., Zhou D., Xia J. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice // BMC Plant Biol. 2021. V. 21. № 1. P. 546. doi: 10.1186/s12870-021-03333-7
- Zhang F., Sapkota S., Neupane A., Yu J., Wang Y., Zhu, K., Lu F., Huang R., Zou J. Effect of salt stress on growth and physiological parameters of sorghum genotypes at an early growth stage // Ind. J. Exp. Biol. 2020. V. 58. P. 404–411.
- Huqe M.A.S., Haque M.S., Sagar A., Uddin M.N., Hossain M.A., Hossain A.Z., Rahman M.M., Wang X., Al-Ashkar I., Ueda A., El Sabagh A. Characterization of maize hybrids (Zea mays L.) for detecting salt tolerance based on morpho-physiological characteristics, ion accumulation and genetic variability at early vegetative stage // Plants. 2021. V. 10. № 11. P. 2549. doi: 10.3390/plants10112549
- Ahmad I., Munsif F., Mihoub A., Jamal A., Saeed M.F., Babar S., Fawad M., Zia A. Beneficial effect of melatonin on growth and chlorophyll content in wheat (Triticum aestivum L.) grown under salt stress conditions // Gesunde Pflanzen. 2022. № 74. doi: 10.1007/s10343-022-00684-5
- Hu D.-D., Dong S., Zhang J., Zhao B., Ren B., Liu P. Endogenous hormones improve the salt tolerance of maize (Zea mays L.) by inducing root architecture and ion balance optimizations // J. Agron. Crop Sci. 2022. № 208. P. 662–674. doi: 10.1111/jac.12593
- Elsiddig A., Zhou G., Zhu G., Nimir N., Suliman M., Ibrahim M.E., Ali A. Nitrogen fertilizer promoting salt tolerance of two sorghum varieties under different salt compositions // Chil. J. Agricult. Res. 2023. V. 83. № 1. P. 3–13. doi: 10.4067/S0718-58392023000100003
- Massimi M., Al-Rifaee M., Alrusheidat J., Dakheel A., Ismail F., Al-Ashgar Y. Salt-tolerant triticale (X Tri-ticosecale Witt.) cultivation in Jordan as a new forage crop // Amer. J. Exp. Agricult. 2016. № 12. P. 1–7. doi: 10.9734/AJEA/2016/24292
- Al-Shoaibi A.A. Combined effects of salinity and temperature on germination, growth and gas exchange in two cultivars of Sorghum bicolor // J. Taibai Univers. Sci. 2020. V. 14. № 1. P. 812–822. doi: 10.1080/16583655.2020.1777800
- Hussain T., Koyro H-W., Zhang W., Liu X., Gul B., Liu X. Low salinity improves photosynthetic performance in Panicum antidotale under drought stress // Front. Plant Sci. 2020. V. 11. № 481. P. 1–13. doi: 10.3389/fpls.2020.00481
- Masood S., Khan K.S., Ashraf M., Iqbal M., Mustafa G., Ali L., Hussain Q., Tariq Javed M., Ahmed N., Jamil M. Iron supply confers tolerance in rice (Oryza sativa L.) to NaCl stress due to up-regulation of antioxidative enzymatic activity // South Afric. J. Bot. 2022. V. 151 (P. A). P. 315–324. doi: 10.1016/j.sajb.2022.10.012
- Rohman M.M., Islam M.R., Monsur M.B., Amiruzzaman M., Fujita M., Hasanuzzaman M. Trehalose protects maize plants from salt stress and phosphorus deficiency // Plants. 2019. V. 8. № 12. P. 568. doi: 10.3390/plants8120568
- Lichtenthaler H.K. Chlorophylls and carotenoids pigments of photosynthetic biomembranes // Methods Ensymol. 1987. № 148. P. 350–382.
- Zhang H., Wang Y., Yu S., Zhou C., Li F., Chen X., Liu L., Wang Y. Plant photosynthesis and dry matter accumulation response of sweet pepper to water-nitrogen coupling in cold and arid environment // Water. 2023. V. 15. P. 2134. doi: 10.3390/w15112134
- Hailu B., Mehari H., Tamiru H. Evaluation of sorghum for salt stress tolerance using different stages as screening tool in Raya Valley Northern Ethiopia // Ethiop. J. Agricult. Sci. 2020. V. 30. P. 265–276.
- Sozharajan R., Natarajan S. Germination and seedling growth of Zea mays L. under different levels of sodium chloride stress // Inter. Let. Nat. Sci. 2014. V. 12. P. 5–15. doi: 10.18052/ href='www.scipress.com/ILNS.12.5' target='_blank'>www.scipress.com/ILNS.12.5
- Wang Z., Wei Y., Zhao Y., Wang Y., Zou F., Huang S., Yang X., Xu Z., Hu H. Physiological and transcriptional evaluation of sweet sorghum seedlings in response to single and combined drought and salinity stress // South Afric. J. Bot. 2022. V. 146. P. 459–471. doi: 10.1016/j.sajb.2021.11.029
- Балнокин Ю.В. Ионный гомеостаз и солеустойчивость растений. М.: Наука, 2012. 99 с.
- Islam M.M., Mamun S.M.A.A., Islam S.M.T. Impact of different levels of NaCl induced salinity on seed germination and plant growth of fodder oats (Avena sativa L.) // J. Bangladesh Agricult. Univer. 2022. V. 20. № 1. P. 40–48. doi: 10.5455/JBAU.15716
- van Zelm E., Zhang Y., Testerink C. Salt tolerance mechanisms of plants // Ann. Rev. Plant Biol. 2020. V. 71. P. 403–433. doi: 10.1146/annurev-arplant-050718-100005
- Zhao S., Zhang Q., Liu M., Zhou H., Ma C., Wang P. Regulation of plant responses to salt stress // Inter. J. Mol. Sci. 2021. V. 22. № 9. P. 4609. doi: 10.3390/ijms22094609
- Masarmi A.G., Solouki M., Fakheri B., Kalaji H.M., Mahgdingad N., Golkari S., Telesiński A., Lamlom S.F., Kociel H., Yousef A.F. Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress // PLoS One. 2023. V. 18. № 3. P. e0282606. doi: 10.1371/journal.pone.0282606
- Chiconato D., Junior G., Santos D., Munns R. Adaptation of sugarcane plants to saline soil // Environ. Exp. Bot. 2019. V. 162. P. 201–211. doi: 10.1016/j.envexpbot.2019.02.021
- Pastuszak J., Dziurka M., Hornyák M., Szczerba A., Kopeć P., Płażek A. Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes // Inter. J. Mol. Sci. 2022. V. 23. № 15. P. 8397. doi: 10.3390/ijms23158397
- Белова Т.А., Кравченко А.С. Физиологические основы адаптации растений к воздействию солевого стресса // Auditorium. 2018. № 1. P. 17.
- Балнокин Ю.В. Растения в условиях стресса // Физиология растений. / Под ред. Ермакова И.П. М.: ИЦ Академия, 2005. С. 530–552.
- Hasanuzzaman M., Bhuyan M.H.M.B., Nahar K., Hossain M.S., Mahmud J.A., Hossen M.S., Masud A.A.C., Moumita F.M. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses // Agronomy. 2018. V. 8. № 3. P. 31 doi: 10.3390/agronomy8030031
- Shtaya M.J.Y., Yasin A., Fatoom J., Jebreen M. The effect of salinity on leaf relative water content and chlorophyll content of three wheat (Triticum aestivum L.) landraces from Palestine // Hebron Univ. Res. J. (Natur. Sci.). 2019. V. 8. P. 52–65.
- Mohammadi Alagoz S., Hadi H., Toorchi M., Pawłowski T.A., Asgari Lajayer B., Price G.W., Farooq M., Astatkie T. Morpho-physiological responses and growth indices of triticale to drought and salt stresses // Sci. Rep. 2023. V. 13. № 1. P. 8896. doi: 10.1038/s41598-023-36119-y
补充文件
