Parseval Frames and the Discrete Walsh Transform


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Suppose that N = 2n and N1 = 2n-1, where n is a natural number. Denote by ℂN the space of complex N-periodic sequences with standard inner product. For any N-dimensional complex nonzero vector (b0, b1,..., bN-1) satisfying the condition

\({\left| {{b_l}} \right|^2} + {\left| {{b_{l + {N_1}}}} \right|^2} \leq \frac{2}{{{N^2}}},\;\;\;l = 0,1,...,{N_1} - 1,\)
we find sequences u0, u1,...., ur ∈ ℂN such that the system of their binary shifts is a Parseval frame for ℂN. It is noted that the vector (b0, b1,..., bN-1) specifies the discrete Walsh transform of the sequence u0, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.

作者简介

Yu. Farkov

Russian Presidential Academy of National Economy and Public Administration

编辑信件的主要联系方式.
Email: farkov-ya@ranepa.ru
俄罗斯联邦, Moscow, 119571

M. Robakidze

Russian Presidential Academy of National Economy and Public Administration

编辑信件的主要联系方式.
Email: irubak@gmail.com
俄罗斯联邦, Moscow, 119571

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019