Parseval Frames and the Discrete Walsh Transform
- Авторлар: Farkov Y.A.1, Robakidze M.G.1
-
Мекемелер:
- Russian Presidential Academy of National Economy and Public Administration
- Шығарылым: Том 106, № 3-4 (2019)
- Беттер: 446-456
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152065
- DOI: https://doi.org/10.1134/S0001434619090141
- ID: 152065
Дәйексөз келтіру
Аннотация
Suppose that N = 2n and N1 = 2n-1, where n is a natural number. Denote by ℂN the space of complex N-periodic sequences with standard inner product. For any N-dimensional complex nonzero vector (b0, b1,..., bN-1) satisfying the condition
\({\left| {{b_l}} \right|^2} + {\left| {{b_{l + {N_1}}}} \right|^2} \leq \frac{2}{{{N^2}}},\;\;\;l = 0,1,...,{N_1} - 1,\)![]()
we find sequences u0, u1,...., ur ∈ ℂN such that the system of their binary shifts is a Parseval frame for ℂN. It is noted that the vector (b0, b1,..., bN-1) specifies the discrete Walsh transform of the sequence u0, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.Негізгі сөздер
Авторлар туралы
Yu. Farkov
Russian Presidential Academy of National Economy and Public Administration
Хат алмасуға жауапты Автор.
Email: farkov-ya@ranepa.ru
Ресей, Moscow, 119571
M. Robakidze
Russian Presidential Academy of National Economy and Public Administration
Хат алмасуға жауапты Автор.
Email: irubak@gmail.com
Ресей, Moscow, 119571
Қосымша файлдар
