Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 106, № 3-4 (2019)

Article

On Equitable Colorings of Hypergraphs

Akhmejanova M.

Аннотация

A two-coloring is said to be equitable if, on the one hand, there are no monochromatic edges (the coloring is regular) and, on the other hand, the cardinalities of color classes differ from one another by at most 1. It is proved that, for the existence of an equitable two-coloring, it suffices that the number of edges satisfy an estimate of the same order as that for a regular coloring. This result strengthens the previously known Radhakrishnan-Srinivasan theorem.

Mathematical Notes. 2019;106(3-4):319-326
pages 319-326 views

The Exact Baire Class of Topological Entropy of Nonautonomous Dynamical Systems

Vetokhin A.

Аннотация

We consider a parametric family of nonautonomous dynamical systems continuously depending on a parameter from some metric space. For any such family, the topological entropy of its dynamical systems is studied as a function of the parameter from the point of view of the Baire classification of functions.

Mathematical Notes. 2019;106(3-4):327-333
pages 327-333 views

On the Convergence of Franklin Series to +∞

Gevorkyan G.

Аннотация

It is proved that the partial sums of a series in the Franklin system with numbers 2μ, μ ∈ ℕ, cannot approach +∞ on a set of positive measure. In particular, a Franklin series cannot converge to +∞ on a set of positive measure.

Mathematical Notes. 2019;106(3-4):334-341
pages 334-341 views

Spaces of Polynomials Related to Multiplier Maps

Yang Z.

Аннотация

Let f(x) be a complex polynomial of degree n. We associate f with a ℂ-vector space W(f) that consists of complex polynomials p(x) of degree at most n — 2 such that f(x) divides f”(x)p(x) — f’(x)p’(x). The space W(f) first appeared in Yu. G. Zarhin’s work, where a problem concerning dynamics in one complex variable posed by Yu. S. Ilyashenko was solved. In this paper, we show that W(f) is nonvanishing if and only if q(x)2 divides f(x) for some quadratic polynomial q(x). In that case, W(f) has dimension (n — 1) — (n1 + n2 + 2N3) under certain conditions, where ni is the number of distinct roots of f with multiplicity i and N3 is the number of distinct roots of f with multiplicity at least 3.

Mathematical Notes. 2019;106(3-4):342-363
pages 342-363 views

Blow-Up of Solutions to Semilinear Nonautonomous Wave Equations with Robin Boundary Conditions

Kalantarova J.

Аннотация

The problem of the blow-up of solutions to the initial boundary value problem for a nonautonomous semilinear wave equation with damping and accelerating terms under the Robin boundary condition is studied. Sufficient conditions for the blow up in finite time of solutions to semilinear damped wave equations with arbitrary large initial energy are obtained. A result on the blow-up of solutions with negative initial energy to a semilinear second-order wave equation with an accelerating term is also obtained.

Mathematical Notes. 2019;106(3-4):364-371
pages 364-371 views

Systems of Representatives

Kovalenko K., Raigorodsky A.

Аннотация

Lower and upper bounds are obtained for the size ζ(n, r, s, k) of a minimum system of common representatives for a system of families of k-element sets. By ζ(n, r, s, k) wemean themaximum (over all systems Σ = {M1, …, Mr} of sets Mi consisting of at least s subsets of {1, …, n} of cardinality not exceeding k) of the minimum size of a system of common representatives of Σ. The obtained results generalize previous estimates of ζ(n, r, s, 1).

Mathematical Notes. 2019;106(3-4):372-377
pages 372-377 views

Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation

Kozhanov A.

Аннотация

The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equation

\({u_t} - \Delta u + [c(x,t) + a{q_0}(x,t)]u = f(x,t),\)
the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number.

Mathematical Notes. 2019;106(3-4):378-389
pages 378-389 views

On the Theory of Optimal Processes in Discrete Systems

Mardanov M., Melikov T., Malik S.

Аннотация

In this paper, by introducing the notion of γ-convex set, we distinguish a wider class of discrete control systems in which the global maximum principle holds. A new type of variation of control for such classes of discrete control systems is proposed and stronger global maximum principle and second-order optimality condition expressed in terms of a singular control of new type are obtained. Generalizing the notion of the relative interior of sets, we obtain an optimality condition for discrete systems in the form of an equality, which we call Pontryagin’s equation.

Mathematical Notes. 2019;106(3-4):390-401
pages 390-401 views

Maslov's Canonical Operator in Problems on Localized Asymptotic Solutions of Hyperbolic Equations and Systems

Nazaikinskii V., Shafarevich A.

Аннотация

An analog of Maslov's canonical operator is defined for functions localized in a neighborhood of subsets of positive codimension.

Mathematical Notes. 2019;106(3-4):402-411
pages 402-411 views

Generalized Smoothness and Approximation of Periodic Functions in the Spaces Lp, 1 < p < +∞

Runovskii K.

Аннотация

Norms of images of operators of multiplier type with an arbitrary generator are estimated by using best approximations of periodic functions of one variable by trigonometric polynomials in the scale of the spaces Lp, 1 < p < +∞. A Bernstein-type inequality for the generalized derivative of the trigonometric polynomial generated by an arbitrary generator ψ, sufficient constructive ψ-smoothness conditions, estimates of best approximations of ψ-derivatives, estimates of best approximations of ψ-smooth functions, and an inverse theorem of approximation theory for the generalized modulus of smoothness generated by an arbitrary periodic generator are obtained as corollaries.

Mathematical Notes. 2019;106(3-4):412-422
pages 412-422 views

On the Degree of Hilbert Polynomials of Derived Functors

Saremi H., Mafi A.

Аннотация

Given a d-dimensional Cohen–Macaulay local ring (R,m), let I be an m-primary ideal, and let J be a minimal reduction ideal of I. If M is a maximal Cohen–Macaulay R-module, then, for n large enough and 1 ≤ id, the lengths of the modules ExtRi(R/J,M/InM) and ToriR(R/J,M/InM) are polynomials of degree d − 1. It is also shown that

\(\deg \beta _i^R(M/{I^n}M) = \deg \mu _R^i(M/{I^n}M) = d - 1,\)
where βiR (·) and μRi (·) are the ith Betti number and the ith Bass number, respectively.

Mathematical Notes. 2019;106(3-4):423-428
pages 423-428 views

Inequalities and Local Uncertainty Principles for Nilpotent Lie Groups

Smaoui K.

Аннотация

The purpose of this paper is to establish a local uncertainty inequality for arbitrary connected, simply connected nilpotent Lie groups. This allows us to prove a couple of global uncertainty inequalities. In the nilpotent case, this type of result is only obtained for the Heisenberg group.

Mathematical Notes. 2019;106(3-4):429-438
pages 429-438 views

Tolerance Spaces Revisited I: Almost Solutions

Sossinsky A.

Аннотация

The paper gives a brief review of tolerance space theory and develops its applications to finding almost solutions (i.e., functions that, substituted into the given equation, satisfy it up to a small numerical error) for equations of different types, providing existence theorems (proved by homological methods) of almost solutions for a wide variety of equations.

Mathematical Notes. 2019;106(3-4):439-445
pages 439-445 views

Parseval Frames and the Discrete Walsh Transform

Farkov Y., Robakidze M.

Аннотация

Suppose that N = 2n and N1 = 2n-1, where n is a natural number. Denote by ℂN the space of complex N-periodic sequences with standard inner product. For any N-dimensional complex nonzero vector (b0, b1,..., bN-1) satisfying the condition

\({\left| {{b_l}} \right|^2} + {\left| {{b_{l + {N_1}}}} \right|^2} \leq \frac{2}{{{N^2}}},\;\;\;l = 0,1,...,{N_1} - 1,\)
we find sequences u0, u1,...., ur ∈ ℂN such that the system of their binary shifts is a Parseval frame for ℂN. It is noted that the vector (b0, b1,..., bN-1) specifies the discrete Walsh transform of the sequence u0, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.

Mathematical Notes. 2019;106(3-4):446-456
pages 446-456 views

Palindromic Sequences of the Markov Spectrum

van Son M.

Аннотация

We study the periods of Markov sequences, which are derived from the continued fraction expression of elements in the Markov spectrum. This spectrum is the set of minimal values of indefinite binary quadratic forms that are specially normalised. We show that the periods of these sequences are palindromic after a number of circular shifts, the number of shifts being given by Stern’s diatomic sequence.

Mathematical Notes. 2019;106(3-4):457-467
pages 457-467 views

On a Trace Formula for Functions of Noncommuting Operators

Aleksandrov A., Peller V., Potapov D.

Аннотация

The main result of the paper is that the Lifshits-Krein trace formula cannot be generalized to the case of functions of noncommuting self-adjoint operators. To prove this, we show that, for pairs (A1, B1) and (A2, B2) of bounded self-adjoint operators with trace class differences A2-A1 and B2-B1, it is impossible to estimate the modulus of the trace of the difference f (A2, B2) - f (A1, B1) in terms of the norm of f in the Lipschitz class.

Mathematical Notes. 2019;106(3-4):481-487
pages 481-487 views

Embedding Theorems between Variable-Exponent Morrey Spaces

Bandaliyev R., Guliyev V.

Аннотация

In this paper, we study various embedding theorems on variable-exponent Morrey spaces. In particular, we found a criterion characterizing embedding between variable-exponent Morrey spaces.

Mathematical Notes. 2019;106(3-4):488-500
pages 488-500 views

Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains

Besov O.

Аннотация

We establish an embedding theorem for spaces of functions of positive smoothness defined on irregular domains of n-dimensional Euclidean space in spaces of the same type and obtain some closely related results.

Mathematical Notes. 2019;106(3-4):501-513
pages 501-513 views

The Riordan–Dirichlet Group

Burlachenko E.

Аннотация

Riordan matrices are infinite lower triangular matrices corresponing to certain operators in the space of formal power series. In the paper, we introduce analogous matrices for the space of Dirichlet formal series. It is shown that these matrices form a group, which is analogous to the Riordan group. An analog of the Lagrange inversion formula is given. As an example of the application of these matrices, a method for obtaining identities analogous to those obtained by using Riordan matrices is considered.

Mathematical Notes. 2019;106(3-4):514-525
pages 514-525 views

Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials

Gadzhimirzaev R.

Аннотация

The paper is devoted to the study of the approximation properties of Fourier sums in terms of the modified Meixner polynomials mn,Nα(x), n = 0,1,..., which generate, for α > -1, an orthonormal system on the grid Ωδ = {0, δ, 2δ,...} with weight

\({\rho _N}(x) = {e^{ - x}}\frac{{\Gamma (Nx + \alpha + 1)}}{{\Gamma (Nx + 1)}}{(1 - {e^{ - \delta }})^{\alpha + 1}},\;\;\;\;\text{where}\;\;\delta = \frac{1}{N},\;N \geq 1.\)

The main attention is paid to the derivation of a pointwise estimate for the Lebesgue function λn,Nα(x) of Fourier sums in terms of the modified Meixner polynomials for x ∈ [θn/2, ∞) and θn = 4n + 2α + 2.

Mathematical Notes. 2019;106(3-4):526-536
pages 526-536 views

Fractional Smoothness in Lp with Dunkl Weight and Its Applications

Gorbachev D., Ivanov V.

Аннотация

We define a fractional power of the Dunkl Laplacian, a fractional modulus of smoothness, and a fractional K-functional on Lp-spaces with Dunkl weight. As an application, we extend our previous results and prove direct and inverse theorems of approximation theory and some inequalities for entire functions of spherical exponential type in the fractional setting.

Mathematical Notes. 2019;106(3-4):537-561
pages 537-561 views

Homotopy Properties of the Space If(X) of Idempotent Probability Measures

Zaitov A., Ishmetov A.

Аннотация

A subspace If(X) of the space of idempotent probability measures on a given compact space X is constructed. It is proved that if the initial compact space X is contractible, then If(X) is a contractible compact space as well. It is shown that the shapes of the compact spaces X and If(X) are equal. It is also proved that, given a compact space X, the compact space If(X) is an absolute neighborhood retract if and only if so is X.

Mathematical Notes. 2019;106(3-4):562-571
pages 562-571 views

On Extrapolation of Polynomials with Real Coefficients to the Complex Plane

Kochurov A., Tikhomirov V.

Аннотация

The problem of the greatest possible absolute value of the kth derivative of an algebraic polynomial of order n > k with real coefficients at a given point of the complex plane is considered. It is assumed that the polynomial is bounded by 1 on the interval [-1,1]. It is shown that the solution is attained for the polynomial κ · Tσ, where Tσ is one of the Zolotarev or Chebyshev polynomials and κ is a number.

Mathematical Notes. 2019;106(3-4):572-576
pages 572-576 views

Norms of the Positive Powers of the Bessel Operator in the Spaces of Even Schlömilch j-Polynomials

Lyakhov L., Sanina E.

Аннотация

The definition of a B-derivative is based on the notion of generalized Poisson shift; this derivative coincides, up to a constant, with the singular Bessel differential operator. We introduce the fractional powers of a B-derivative by analogy with fractional Marchaud and Weyl derivatives. We prove statements on the coincidence of these derivatives for the classes of even smooth integrable functions. We obtain analogs of Bernstein’s inequality for B-derivatives of integer and fractional order in the space of even Schlömilch j-polynomials with sup-norm and Lpγ-norm (the Lebesgue norm with power weight xγ, γ > 0). The resulting estimates are sharp and define the norms of powers of the Bessel operator in the spaces of even Schlömilch j-polynomials.

Mathematical Notes. 2019;106(3-4):577-590
pages 577-590 views

Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory

Podoprikhin D., Fomenko T.

Аннотация

The article develops results of the authors’ previous papers on the topic. The notion of the homotopy of a multivalued mapping of an ordered set is introduced. We study the problem as to whether the existence of a fixed point (or a coincidence point) is preserved under multivalued homotopies of a multivalued mapping (or a pair of multivalued mappings). An application of some of the authors’ previous results on fixed points in game theory is considered.

Mathematical Notes. 2019;106(3-4):591-601
pages 591-601 views

On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations

Pyatkov S.

Аннотация

We study the solvability of nonlocal boundary-value problems for singular parabolic equations of higher order in which the coefficient of the time derivative belongs to a space Lp of spatial variables and possesses a certain smoothness with respect to time. No constraints are imposed on the sign of this coefficient, i.e., the class of equations also contains parabolic equations with varying time direction. We obtain conditions guaranteeing the solvability of boundary-value problems in weighted Sobolev spaces and the uniqueness of the solutions.

Mathematical Notes. 2019;106(3-4):602-615
pages 602-615 views

The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent

Sharapudinov I.

Аннотация

The problem of the basis property of ultraspherical Jacobi polynomials in a Lebesgue space with variable exponent is studied. We obtain sufficient conditions on the variable exponent p(x) > 1 that guarantee the uniform boundedness of the sequence Snα,α(f), n = 0,1,..., of Fourier sums with respect to the ultraspherical Jacobi polynomials Pkα,α(x) in the weighted Lebesgue space Lμp( x) ([-1, 1]) with weight μ = μ(x) = (1 - x2)α, where α >-1/2. The case α = -1/2 is studied separately. It is shown that, for the uniform boundedness of the sequence Sn-1/2, -1/2 (f), n = 0,1,..., of Fourier—Chebyshev sums in the space Lμp( x) ([-1,1]) with μ(x) = (1 - x2)-1/2, it suffices and, in a certain sense, necessary that the variable exponent p satisfy the Dini-Lipschitz condition of the form

\(\left| {p(x) - p(y)} \right| \leq \frac{d}{{ - \ln \left| {x - y} \right|}},\;\;\;\text{where}\;\left| {x - y} \right| \leq \frac{1}{2},\;\;x,y \in [ - 1,1],\;\;d > 0,\)
and the condition p(x) > 1 for all x ∈ [-1,1].

Mathematical Notes. 2019;106(3-4):616-638
pages 616-638 views

Localized Blow-Up Regimes for Quasilinear Doubly Degenerate Parabolic Equations

Shishkov A., Yevgenieva Y.

Аннотация

Singular blow-up regimes are studied for a wide class of second-order quasilinear parabolic equations. Energy methods are used to obtain exact (in a certain sense) estimates of the final profile of the generalized solution near the blow-up time depending on the rate of increase of the global energy of this solution.

Mathematical Notes. 2019;106(3-4):639-650
pages 639-650 views

Short Communications

On Integral Representation of Sums of Some Power Series

Mirzoev K., Safonova T.
Mathematical Notes. 2019;106(3-4):468-472
pages 468-472 views
pages 476-480 views

Automorphism Groups of Moishezon Threefolds

Prokhorov Y., Shramov K.
Mathematical Notes. 2019;106(3-4):651-655
pages 651-655 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».