Parseval Frames and the Discrete Walsh Transform


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Suppose that N = 2n and N1 = 2n-1, where n is a natural number. Denote by ℂN the space of complex N-periodic sequences with standard inner product. For any N-dimensional complex nonzero vector (b0, b1,..., bN-1) satisfying the condition

\({\left| {{b_l}} \right|^2} + {\left| {{b_{l + {N_1}}}} \right|^2} \leq \frac{2}{{{N^2}}},\;\;\;l = 0,1,...,{N_1} - 1,\)
we find sequences u0, u1,...., ur ∈ ℂN such that the system of their binary shifts is a Parseval frame for ℂN. It is noted that the vector (b0, b1,..., bN-1) specifies the discrete Walsh transform of the sequence u0, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.

Sobre autores

Yu. Farkov

Russian Presidential Academy of National Economy and Public Administration

Autor responsável pela correspondência
Email: farkov-ya@ranepa.ru
Rússia, Moscow, 119571

M. Robakidze

Russian Presidential Academy of National Economy and Public Administration

Autor responsável pela correspondência
Email: irubak@gmail.com
Rússia, Moscow, 119571

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019