Hereditary sensory motor polyneuropathy
- Authors: Gabbasova E.L.1, Komissarov A.E.2, Agranovich O.E.1, Savina M.V.1, Kochenova E.A.1, Trofimova S.I.1, Slobodina A.D.1, Shagimardanova E.I.3, Shigapova L.H.3, Sarantseva S.V.2
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”
- Kazan University
- Issue: Vol 8, No 3 (2020)
- Pages: 333-342
- Section: Clinical cases
- URL: https://journals.rcsi.science/turner/article/view/21182
- DOI: https://doi.org/10.17816/PTORS21182
- ID: 21182
Cite item
Abstract
Background. Congenital contractures are a heterogeneous group of diseases with different prognosis and different treatment modalities.
Clinical case. This article describes a family case of hereditary sensory motor polyneuropathy caused by the mutation of с.943G>A (р.Arg315Trp) in the transient receptor potential vanilloid cation channel 4 (TRPV4) (NM_021625.4). The patient’s clinical and neurological characteristics as well as the results of genetic and neurophysiological examinations are presented.
Discussion. Most often, mutations in the TRPV4 lead to 3 main diseases: autosomal dominant hereditary sensory motor neuropathy, type 2C, scapuloperoneal spinal muscular atrophy, and congenital non-progressive distal spinal muscular atrophy with contractures. The present article describes in detail the differential diagnosis of hereditary sensory motor polyneuropathy to facilitate accurate verification of this disease by clinicians.
Conclusion. Patients with congenital multiple contractures need cooperative observation and examination by orthopedic surgeons and neurologists, including neurophysiological and genetic interventions in the examination plan for disease verification in order to optimize the treatment strategy and to predict the outcomes.
Full Text
##article.viewOnOriginalSite##About the authors
Elena L. Gabbasova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: alenagabbasova@yandex.ru
ORCID iD: 0000-0001-9908-0327
MD, neurologist of the Department of Arthrogryposis
Russian Federation, Saint PetersburgArtem E. Komissarov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”
Email: tem3650@yandex.ru
ORCID iD: 0000-0002-3564-1698
research laboratory assistant
Russian Federation, Leningrad Region, GatchinaOlga E. Agranovich
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN-code: 4393-3694
http://www.rosturner.ru/kl10.htm
MD, PhD, D.Sc., Supervisor of the Department of Arthrogryposis
Russian Federation, Saint PetersburgMargarita V. Savina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
PhD, Head of the Laboratory of Physiological and Biomechanical Research
Russian Federation, Saint PetersburgEvgenija A. Kochenova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: jsummer84@yandex.ru
ORCID iD: 0000-0001-6231-8450
MD, PhD, orthopedic surgeon of the Department of Arthrogryposis
Russian Federation, Saint PetersburgSvetlana I. Trofimova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: trofimova_sv@mail.ru
ORCID iD: 0000-0003-2690-7842
SPIN-code: 5833-6770
MD, PhD, research associate of the Department of Arthrogryposis
Russian Federation, Saint PetersburgAlexandra D. Slobodina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: sashylikslobodina@mail.ru
ORCID iD: 0000-0002-5604-0269
PhD student
Russian Federation, Saint PetersburgElena I. Shagimardanova
Kazan University
Email: rjuka@mail.ru
ORCID iD: 0000-0003-2339-261X
PhD (in Biol.), senior research associate
Russian Federation, KazanLeila H. Shigapova
Kazan University
Email: Shi-leyla@yandex.ru
ORCID iD: 0000-0001-6292-6560
research associate
Russian Federation, KazanSvetlana V. Sarantseva
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”
Email: svesar1@yandex.ru
ORCID iD: 0000-0002-3943-7504
MD, PhD, Head of the Laboratory
Russian Federation, Leningrad Region, GatchinaReferences
- Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: A review and update. J Bone Joint Surg Am. 2009;91 Suppl 4:40-46. https://doi.org/10.2106/JBJS.I. 00281.
- Lowry RB, Sibbald B, Bedard T, Hall JG. Prevalence of multiple congenital contractures including arthrogryposis multiplex congenita in Alberta, Canada, and a strategy for classification and coding. Birth Defects Res A Clin Mol Teratol. 2010;88(12):1057-1061. https://doi.org/10.1002/bdra.20738.
- Hall JG. Arthrogryposis (multiple congenital contractures): Diagnostic approach to etiology, classification, genetics, and general principles. Eur J Med Genet. 2014;57(8):464-472. https://doi.org/10.1016/ j.ejmg.2014.03.008.
- Hall JG, Kiefer J. Arthrogryposis as a syndrome: Gene ontology analysis. Mol Syndromol. 2016;7(3):101-109. https://doi.org/10.1159/000446617.
- Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog Biophys Mol Biol. 2010;103(1):2-17. https://doi.org/10.1016/j.pbiomolbio.2009.10.002.
- Jang Y, Jung J, Kim H, et al. Axonal neuropathy-associated TRPV4 regulates neurotrophic factor-derived axonal growth. J Biol Chem. 2012;287(8):6014-6024. https://doi.org/10.1074/jbc.M111.316315.
- Landoure G, Zdebik AA, Martinez TL, et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet. 2010;42(2):170-174. https://doi.org/10.1038/ng.512.
- Masuyama R, Vriens J, Voets T, et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 2008;8(3):257-265. https://doi.org/10.1016/j.cmet.2008.08.002.
- Echaniz-Laguna A, Dubourg O, Carlier P, et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy. Neurology. 2014;82(21):1919-1926. https://doi.org/10.1212/WNL.0000000000000450.
- Cho TJ, Matsumoto K, Fano V, et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: A report of three patients. Am J Med Genet A. 2012;158A(4):795-802. https://doi.org/10.1002/ajmg.a.35268.
- Fleury P, Hageman G. A dominantly inherited lower motor neuron disorder presenting at birth with associated arthrogryposis. J Neurol Neurosurg Psychiatry. 1985;48(10):1037-1048. https://doi.org/10.1136/jnnp.48.10.1037.
- Biasini F, Portaro S, Mazzeo A, et al. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul Disord. 2016;26(4-5):312-315. https://doi.org/10.1016/ j.nmd.2016.02.010.
- Berciano J, Baets J, Gallardo E, et al. Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. J Neurol. 2011;258(8):1413-1421. https://doi.org/10.1007/s00415-011-5947-7.
- DeLong R, Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch Neurol. 1992;49(9):905-908. https://doi.org/10.1001/archneur.1992.00530330027010.
- Landoure G, Sullivan JM, Johnson JO, et al. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology. 2012;79(2):192-194. https://doi.org/10.1212/WNL.0b013e31825f04b2.
- Chen DH, Sul Y, Weiss M, et al. CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene. Neurology. 2010;75(22):1968-1975. https://doi.org/10.1212/WNL.0b013e3181ffe4bb.
- Klein CJ, Shi Y, Fecto F, et al. TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot-Marie-Tooth neuropathies. Neurology. 2011;76(10):887-894. https://doi.org/10.1212/WNL.0b013e31820f2de3.
- Evangelista T, Bansagi B, Pyle A, et al. Phenotypic variability of TRPV4 related neuropathies. Neuromuscul Disord. 2015;25(6):516-521. https://doi.org/10.1016/ j.nmd.2015.03.007.
- Aharoni S, Harlalka G, Offiah A, et al. Striking phenotypic variability in familial TRPV4-axonal neuropathy spectrum disorder. Am J Med Genet A. 2011;155A(12):3153-3156. https://doi.org/10.1002/ajmg.a.34327.
- Fleming J, Quan D. A case of congenital spinal muscular atrophy with pain due to a mutation in TRPV4. Neuromuscul Disord. 2016;26(12):841-843. https://doi.org/10.1016/j.nmd.2016.09.013.
Supplementary files
