Сравнительный анализ результатов трансплантации боуменового слоя без и после кросслинкинга при прогрессирующем кератоконусе

Обложка
  • Авторы: Оганесян О.Г.1,2, Гетадарян В.Р.1, Макаров П.В.1, Ашикова П.М.1, Игнатьева Н.Ю.3
  • Учреждения:
    1. Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр глазных болезней им. Гельмгольца» Министерства здравоохранения Российской Федерации
    2. Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Министерства здравоохранения Российской Федерации
    3. Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им. М.В. Ломоносова»
  • Выпуск: Том 13, № 1 (2020)
  • Страницы: 17-27
  • Раздел: Оригинальные статьи
  • URL: https://journals.rcsi.science/ov/article/view/19145
  • DOI: https://doi.org/10.17816/OV19145
  • ID: 19145

Цитировать

Полный текст

Аннотация

Цель работы. Сравнительное изучение трансплантации боуменового слоя (ТБС) после его кросслинкинга и ТБС без его предварительного кросслинкинга у пациентов с прогрессирующим кератоконусом (КК) III–IV стадии.

Материалы и методы. Под наблюдением находились 30 пациентов в возрасте от 14 до 37 лет с кератоконусом III–IV стадии. В первую группу вошли 15 пациентов, которым была проведена ТБС без его предварительного кросслинкинга. Во вторую группу вошли 15 пациентов, которым была проведена ТБС после его кросслинкинга. Критериями включения пациентов в исследования явились: прогрессирующий КК, с минимальной толщиной роговицы (ТРmin) без эпителия 400 мкм и менее, максимальным кератометрическим показателем (Kmax) 58 D и более, с удовлетворяющей пациентов остротой зрения в жёсткой склеральной контактной линзе и отказ пациента от кератопластики.

Результаты. В сравнении с дооперационными данными в обеих группах Kmax уменьшился в среднем на 0,6 ± 0,5 D, а ТРmin увеличилась в первой группе в среднем на 41,5 ± 16,3 мкм, во второй группе — в среднем на 31,9 ± 9,2 мкм. Максимально корригируемая острота зрения (МКОЗ) осталась неизменной.

Заключение. В имеющиеся сроки наблюдения 26,6 ± 6,2 мес. у прооперированных пациентов показатели ТРmin, Kmax остаются стабильными, что свидетельствует о купировании прогрессирования КК после ТБС с кросслинкингом и без него. Сохранение величин плотности эндотелиальных клеток, МКОЗ свидетельствует о безопасности обеих методик.

Об авторах

Оганес Георгиевич Оганесян

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр глазных болезней им. Гельмгольца» Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Министерства здравоохранения Российской Федерации

Email: oftalmolog@mail.ru

д-р мед. наук, ведущий научный сотрудник отдела травматологии и реконструктивной хирургии; профессор кафедры глазных болезней

Россия, Москва

Востан Рафаелович Гетадарян

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр глазных болезней им. Гельмгольца» Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: vostan11@gmail.com

аспирант отдела травматологии и реконструктивной хирургии

Россия, Москва

Павел Васильевич Макаров

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр глазных болезней им. Гельмгольца» Министерства здравоохранения Российской Федерации

Email: makarovpavel61@mail.ru

д-р мед. наук, ведущий научный сотрудник отдела травматологии и реконструктивной хирургии

Россия, Москва

Патимат Магомедрасуловна Ашикова

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр глазных болезней им. Гельмгольца» Министерства здравоохранения Российской Федерации

Email: patiyago@mail.ru

аспирант отдела травматологии и реконструктивной хирургии

Россия, Москва

Наталия Юрьевна Игнатьева

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им. М.В. Ломоносова»

Email: n.yu.ignatieva@gmail.com

д-р хим. наук, доцент кафедры физической химии химического факультета

Россия, Москва

Список литературы

  1. Rabinowitz Y. S. Keratoconus. Survey of Ophthalmology. 1998;42(4):297–319. doi: 10.1016/s0039-6257(97)00119-7
  2. Miháltz K, Kovács I, Kránitz K, et al. Mechanism of aberration balance and the effect on retinal image quality in keratoconus: optical and visual characteristics of keratoconus. J Cataract Refract Surg. 2011; 37 (5):914-922. doi: 10.1016/j.jcrs.2010.12.040
  3. Rafati S, Hashemi H, Nabovati P, et al. Demographic profile, clinical, and topographic characteristics of keratoconus patients attending at a tertiary eye center. J Curr Ophthalmol. 2019 Feb 23;31(3):268-274.]. doi: 10.1016/j.joco.2019.01.013
  4. Khawaja, A. P., Rojas Lopez, K. E., Hardcastle, A. J., et al. Genetic Variants Associated With Corneal Biomechanical Properties and Potentially Conferring Susceptibility to Keratoconus in a Genome-Wide Association Study. JAMA Ophthalmol. 2019 Jun 27. doi: 10.1001/jamaophthalmol.2019.2058
  5. Chang HY, Chodosh J. The genetics of keratoconus. Semin Ophthalmol. 2013 Sep-Nov;28(5-6):275-80. doi: 10.3109/08820538.2013.825295
  6. Lee R, Hafezi F, Randleman JB. Bilateral Keratoconus Induced by Secondary Hypothyroidism After Radioactive Iodine Therapy. J Refract Surg. 2018 May 1;34(5):351-353. doi: 10.3928/1081597X-20171031-02.
  7. Gatzioufas Z, Thanos S. Acute keratoconus induced by hypothyroxinemia during pregnancy. J Endocrinol Invest. 2008 Mar;31(3):262-6. doi: 10.1007/BF03345600
  8. Tina B McKay, Jesper Hjortdal, Henrik Sejersen, et al. Endocrine and Metabolic Pathways Linked to Keratoconus: Implications for the Role of Hormones in the Stromal Microenvironment, Sci Rep. 2016; 6: 25534. doi: 10.1038/srep25534
  9. McKay TB, Hjortdal J, Sejersen H, et al. Endocrine and Metabolic Pathways Linked to Keratoconus: Implications for the Role of Hormones in the Stromal Microenvironment. Sci Rep. 2016 May 9;6:25534. doi: 10.1038/srep25534.
  10. Davidson A. E., Hayes S., Hardcastle A. J., et al. The pathogenesis of keratoconus. Eye. 2014;28(2):189–195. doi: 10.1038/eye.2013.278
  11. Nemet AY, Vinker S, Bahar I, et al. The association of keratoconus with immune disorders. Cornea. 2010 Nov;29(11):1261-4. doi: 10.1097/ICO.0b013e3181cb410b.
  12. Becker J., Salla S., Dohmen U. et al. Explorative study of interleukin levels in the human cornea. Graefes Arch Clin Exp Ophthalmol. 1995 Dec;233(12):766-71. doi: 10.1007/bf00184087
  13. Woodward MA, Blachley TS, Stein JD. The Association Between Sociodemographic Factors, Common Systemic Diseases, and Keratoconus: An Analysis of a Nationwide Heath Care Claims Database. Ophthalmology. 2016 Mar;123(3):457-65.e2. doi: 10.1016/j.ophtha.2015.10.035.
  14. Naderan M , Rajabi MT , Zarrinbakhsh P., et al. Effect of Allergic Diseases on Keratoconus Severity. Ocul Immunol Inflamm. 2017 Jun;25(3):418-423. doi: 10.3109/09273948.2016.1145697
  15. McMahon TT, Kim LS, Fishman GA, et al. CRB1 gene mutations are associated with keratoconus in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3185-7. doi: 10.1167/iovs.08-2886.
  16. Marsack JD, Benoit JS, Kollbaum PS, Anderson HA. Application of Topographical Keratoconus Detection Metrics to Eyes of Individuals with Down Syndrome. Optom Vis Sci. 2019 Sep;96(9):664-669.
  17. Vazirani J, Basu S. Keratoconus: current perspectives. Clin Ophthalmol. 2013;7:2019-30. doi: 10.2147/OPTH.S50119.
  18. Ferdi Alex C., Nguyen Vuong, Gore Daniel M., et al. Keratoconus Natural Progression: A Systematic Review and Meta-analysis of 11 529 Eyes. Ophthalmology. 2019 Jul;126(7):935-945. doi: 10.1016/j.ophtha.2019.02.029.
  19. Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol. 1986;101(3):267–273. doi: 10.1016/0002-9394(86)90817-2
  20. Godefrooij Daniel A., de Wit G. Ardine, Uiterwaal Cuno S., et al. Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. American Journal of Ophthalmology. 2017;175:169–172. doi: 10.1016/j.ajo.2016.12.015
  21. Bak-Nielsen S, Ramlau-Hansen CH, Ivarsen A, et al. Incidence and prevalence of keratoconus in Denmark—an update. Acta Ophthalmol. 2019. doi: 10.1111/aos.14082
  22. Xu Liang, Wang Ya Xing, Guo Yin, et al. Prevalence and Associations of Steep Cornea/Keratoconus in Greater Beijing. The Beijing Eye Study. PLoS ONE. 2012; 7 (7):e39313. doi: 10.1371/journal.pone.0039313
  23. Torres Netto EA, Al-Otaibi WM, Hafezi NL, et al. Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br J Ophthalmol. 2018;102(10):1436–1441. doi: 10.1136/bjophthalmol-2017-311391
  24. Barnett M, Mannis MJ. Contact lenses in the management of keratoconus; Cornea. 2011 Dec;30(12):1510-6. doi: 10.1097/ICO.0b013e318211401f
  25. Parker JS, van Dijk K, Melles GR. Treatment options for advanced keratoconus: A review. Surv Ophthalmol. 2015 Sep-Oct;60(5):459-80. doi: 10.1016/j.survophthal.2015.02.004
  26. Colin J, Cochener B, Savary G, et al. Correcting keratoconus with intracorneal rings. J Cataract Refract Surg. 2000;26:1117–1122. doi: 10.1016/s0886-3350(00)00451-x
  27. Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. The American Journal of Ophthalmology. 2003;135(5):620–627. doi: 10.1016/s0002-9394(02)02220-1
  28. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11:65–74. doi: 10.1016/j.jtos.2013.01.002
  29. Mastropasqua L, Nubile M, Calienno R, et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol. 2014;157:623–630. doi: 10.1016/j.ajo.2013.11.018
  30. Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg. , 2009; 25: 1034-1037. doi: 10.3928/1081597X-20090901-02
  31. Cifariello F, Minicucci M, Di Renzo F et al. Epi-off versus epi-on corneal collagen cross-linking in keratoconus patients: a comparative study through 2-year follow-up. J Ophthalmol. 2018;2018:4947983. doi: 10.1155/2018/4947983
  32. Coskunseven E, Kymionis GD, Tsiklis NS, et al. Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: a survey of 850 eyes with keratoconus. Acta Ophthalmol. 2011;89:54–57. doi: 10.1111/j.1755-3768.2009.01605.x
  33. Abou Shousha M, Perez VL, Fraga Santini Canto AP, et al. The use of Bowman's layer vertical topographic thickness map in the diagnosis of keratoconus. Ophthalmology. 2014;121(5):988-93. doi: 10.1016/j.ophtha.2013.11.034
  34. S. Sawaguchi, T. Fukuchi, H. Abe, et al. Three-dimensional scanning electron microscopic study of keratoconus corneas. Arch. Ophthalmol. 116(1), 62–68 (1998). doi: 10.1001/archopht.116.1.62
  35. Korine van Dijk K, Parker J, Tong CM, et al. Midstromal isolated Bowman layer graft for reduction of advanced keratoconus: a technique to postpone penetrating or deep anterior lamellar keratoplasty. JAMA Ophthalmol. 2014 Apr 1;132(4):495-501. doi: 10.1001/jamaophthalmol.2013.5841
  36. Оганесян О.Г., Гетадарян В.Р., Макаров П.В., и др.Трансплантация Боуменового слоя при прогрессирующем кератоконусе. Российский офтальмологический журнал. 2019;12(4):43-50. [Oganesyan O.G., Getadaryan V.R., Makarov P.V., et al. Bowman layer transplantation in eyes with progressive advanced keratoconus. Russian ophthalmological journal. 2019; 12 (4): 43–50 (In Russian)]. doi: 10.21516/2072-0076-2019-12-4-43-50
  37. Высекатель трансплантата донорской роговицы: пат. 177469 U1 РФ МПК 51 A61F 9/007 / Оганесян О.Г., Грдиканян А.А., Гетадарян В.Р., и др. Заявитель и патентообладатель ФГБУ «Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца» Министерства здравоохранения РФ. - №2017137958; заявл. 31.10.2017; опубл. 26.02.2018, Бюл № 6. [Donor corneal graft cutter: US Pat. 177469 U1 of the Russian Federation IPC 51 A61F 9/007 / Oganesyan O.G., Grdikanyan A.A., Getadaryan V.R., et al. Applicant and patentee of the Helmholtz National Medical Research Center of Eye Diseases of the Ministry of Health of the Russian Federation. - No. 2017137958; declared 10/31/2017; publ. 02/26/2018, Bull No. 6.]
  38. Sugar A., Sugar J. Techniques in penetrating keratoplasty: a quarter century of development. Cornea. – 2000. – Vol. 19, № 5. – P. 603-610. doi: 10.1097/00003226-200009000-00005
  39. Melles GR Posterior lamellar keratoplasty: DLEK to DSEK to DMEK Cornea. 2006 Sep;25(8):879-81. doi: 10.1097/01.ico.0000243962.60392.4f
  40. O’Brart DP, Chan E, Samaras K, et al. A randomised, prospective study to investigate the efficacy of riboflavin/ul-traviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J Ophthalmol. 2011;95(11):1519-24.62. doi: 10.1136/bjo.2010.196493
  41. Wittig-Silva C, Whiting M, Lamoureux E, et al. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24(7):S720-S725. doi: 10.3928/1081597X-20080901-15
  42. Wittig-Silva C, Chan E, Islam FM, et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology. 2014;121(4):812-821. doi: 10.1016/j.ophtha.2013.10.028
  43. Song Y, Zhang J, Pan Z. Systematic Review and Meta-Analysis of Clinical Outcomes of Penetrating Keratoplasty Versus Deep Anterior Lamellar Keratoplasty for Keratoconus. Exp Clin Transplant. 2019 Nov 13. doi: 10.6002/ect.2019.0123
  44. K van Dijk, Liarakos VS, Parker J, et al. Bowman layer transplantation to reduce and stabilize progressive, advanced keratoconus. Ophthalmology. 2015;122(5):909–917. doi: 10.1016/j.ophtha.2014.12.005
  45. Edelstein SL, DeMatteo J, Stoeger CG, et al. Report of the Eye Bank Association of America Medical Review Subcommittee on Adverse Reactions Reported From 2007 to 2014. Cornea. 2016 Jul;35(7):917-26. doi: 10.1097/ICO.0000000000000869

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Изолированный боуменовый слой: а — интактные образцы, b — опытный образец после кросслинкинга

Скачать (313KB)
3. Рис. 2. Дифференциальная сканирующая калориметрия образцов контрольного (1) и опытного (2) БС. 1 — Комплексный пик: площадь — –14,78 Дж/г; пик – 63,7 °С; начало 61,5 °С; конец — 67,2 °С; ширина 4,8 °С (37 000 %); высота — 0,5656 мВт/мг. 2 — Комплексный пик: площадь — –8,289 Дж/г; пик — 65,4 °С; начало 61,5 °С; конец — 68,1 °С; ширина 5,2 °С (37 000 %); высота — 0,3034 мВт/мг

Скачать (50KB)
4. Рис. 3. Изолированный боуменовый слой в сбалансированном физиологическом растворе BSS

Скачать (124KB)
5. Рис. 4. Послеоперационный хейз роговицы у пациента группы 2

Скачать (263KB)

© Оганесян О.Г., Гетадарян В.Р., Макаров П.В., Ашикова П.М., Игнатьева Н.Ю., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах