COVID-19 as a new risk factor for the development of acute vascular diseases of the optic nerve and retina

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The new coronavirus disease (COVID-19) is a viral respiratory infection accompanied by systemic “endotheliitis”. COVID-19 patients usually encounter changes related to hypercoagulability, hypofibrinolysis, and increased intravascular platelet aggregation. There is also a vascular wall thromboresistance decrease and impaired vasomotor function, which significantly increase the risk of thromboembolic complications. Currently, pathogenic aspects of the relationship between COVID-19 and vascular and inflammatory conditions of the optic nerve and retina are actively investigated. One of the triggers of impaired blood flow in ocular vessels may be a perfusion pressure decrease, observed in the acute period of the infectious process. This is related to both COVID-19 clinical course features and to resuscitation specificity as well. Secondary autoimmune inflammation is being considered as a mechanism of damage to the vascular wall in the post-infectious period. In this publication, possible pathogenic links of these diseases are considered for the first time in a specific context of the example of ischemic optic neuropathy associated with coronavirus infection.

About the authors

Vadim A. Turgel

Academican I.P. Pavlov First St. Petersburg State Medical University

Email: zanoza194@gmail.com
ORCID iD: 0000-0003-3049-1974

postgraduate student

Russian Federation, 6-8 L’va Tolstogo str., Saint Petersburg, 197089

Vladimir A. Antonov

Academican I.P. Pavlov First St. Petersburg State Medical University

Email: antonov@alborada.fi
ORCID iD: 0000-0002-5823-8367

postgraduate student

Russian Federation, 6-8 L’va Tolstogo str., Saint Petersburg, 197089

Svetlana N. Tultseva

Academican I.P. Pavlov First St. Petersburg State Medical University

Email: tultceva@yandex.ru
ORCID iD: 0000-0002-9423-6772
SPIN-code: 3911-0704

MD, Dr. Sci. (Med.)

Russian Federation, 6-8 L’va Tolstogo str., Saint Petersburg, 197089

Fedor E. Shadrichev

St. Petersburg Territorial Diabetology Center

Email: shadrichev_dr@mail.ru
ORCID iD: 0000-0002-7790-9242
SPIN-code: 4465-8381

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Niurguyana N. Grigorieva

St. Petersburg Territorial Diabetology Center

Author for correspondence.
Email: grinur@mail.ru
SPIN-code: 7299-4748

MD, Cand. Sci. (Med.), ophthalmologist

Russian Federation, Saint Petersburg

References

  1. World Health Organization (WHO). Coronavirus disease (COVID19) pandemic. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed: 30.04.2021.
  2. COVID-19 and vascular disease. EBioMedicine. 2020;58:102966. doi: 10.1016/j.ebiom.2020.102966
  3. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323:2052–2059. doi: 10.1001/jama.2020.6775
  4. Nishiga M, Wang DW, Han Y, et al. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543–558. doi: 10.1038/s41569-020-0413-9
  5. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. doi: 10.1183/13993003.01227-2020
  6. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. DOI: 10&1016/j.tromres.2020.04.013
  7. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun. 2020;87:59–73. doi: 10.1016/j.bbi.2020.04.046
  8. Marinho PM, Marcos AAA, Romano AC et al. Retinal findings in patients with COVID-19. Lancet. 2020;395(10237):1610. DOI: 1016/S0140-6736(20)31014-X
  9. Caporossi T, Bacherini D, Tartaro, et al. Retinal findings in patients affected by COVID19 intubated in an intensive care unit. Acta Ophthalmol. 2020. doi: 10.1111/aos.14734
  10. Lani-Louzada R, Ramos CdVF, Cordeiro RM, et al. Retinal changes in COVID-19 hospitalized cases. PLoS ONE. 2020;15(12): e0243346. doi: 10.1371/journal.pone.0243346
  11. Landecho MF, Yuste JR, Gándara E, et al. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease? J Intern Med. 2021;289(1):116–120. doi: 10.1111/joim.13156
  12. Invernizzi A, Torre A, Parrulli S, Zicarelli F, et al. Retinal findings in patients with COVID-19: Results from the SERPICO-19 study. EClinicalMedicine. 2020;27:100550. doi: 10.1016/j.eclinm.2020.100550
  13. Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection. Eye (Lond). 2020;34(12):2352–2353. doi: 10.1038/s41433-020-1069-8
  14. Sheth JU, Narayanan R, Goyal J, et al. Retinal vein occlusion in COVID-19: A novel entity. Indian J Ophthalmol. 2020;68(10):2291–2293. doi: 10.4103/ijo.IJO_2380_20
  15. Invernizzi A, Pellegrini M, Messenio D, et al. Impending Central Retinal Vein Occlusion in a Patient with Coronavirus Disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020;28(8):1290–1292. doi: 10.1080/09273948.2020.1807023
  16. Insausti-Garcia A, Reche-Sainz JA, Ruiz-Arranz C, et al. Papillophlebitis in a COVID-19 patient: Inflammation and hypercoagulable state. European Journal of Ophthalmology. 2020:1120672120947591. doi: 10.1177/1120672120947591
  17. Acharya S, Diamond M, Anwar S, et al. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020;21: e00867. doi: 10.1016/j.idcr.2020.e00867
  18. Quintana-Castanedo L, Feito-Rodríguez M, Fernández-Alcalde C, et al. Concurrent chilblains and retinal vasculitis in a child with COVID-19. Journal of the European Academy of Dermatology and Venereology. 2020;34(12): e764–e766. doi: 10.1111/jdv.16801
  19. Petrishchev NN, Halepo OV, Vavilenkova YA, et al. COVID-19 i sosudistye narusheniya (obzor literatury). Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2020;19(3):90–98. (In Russ.) doi: 10.24884/1682-6655-2020-19-3-90-98
  20. Zhang S, Zhang J, Wang C, et al COVID19 and ischemic stroke: Mechanisms of hypercoagulability (Review). Int J Mol Med. 2021;47(3):21. doi: 10.3892/ijmm.2021.4854
  21. Li H, Liu L, Zhang D, et al. SARSCoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517–1520. doi: 10.1016/S0140-6736(20)30920-X
  22. Bertoli F, Veritti D, Danese C, et al. Ocular Findings in COVID-19 Patients: A Review of Direct Manifestations and Indirect Effects on the Eye. J Ophthalmol. 2020;2020:4827304. doi: 10.1155/2020/4827304
  23. Lecler A, Cotton F, Lersy F et al. Ocular MRI Findings in Patients with Severe COVID-19: A Retrospective Multicenter Observational Study. Radiology. 2021:204394. doi: 10.1148/radiol.2021204394
  24. Burde RM. Optic disk risk factors for nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1993;116(6):759–764; doi: 10.1016/s0002-9394(14)73478-6
  25. Purvin V, King R, Kawasaki A, Yee R. Anterior ischemic optic neuropathy in eyes with optic disc drusen. Arch Ophthalmol. 2004;122(1):48–53. doi: 10.1001/archopht.122.1.48
  26. Characteristics of patients with nonarteritic anterior ischemic optic neuropathy eligible for the Ischemic Optic Neuropathy Decompression Trial. Arch Ophthalmol. 1996;114(11):1366–1374. doi: 10.1001/archopht.1996.01100140566007
  27. Lee MS, Grossman D, Arnold AC, et al. Incidence of nonarteritic anterior ischemic optic neuropathy: increased risk among diabetic patients. Ophthalmology. 2011;118(5):959–963. doi: 10.1016/j.ophtha.2011.01.054
  28. Hayreh SS, Podhajsky P, Zimmerman MB. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders. Ophthalmologica. 1999;213(2):76–96. doi: 10.1159/000027399
  29. Chen T, Song D, Shan G, et al. The Association between Diabetes Mellitus and Nonarteritic Anterior Ischemic Optic Neuropathy: A Systematic Review and Meta-Analysis. PLoS One. 2013;8(9): e76653. doi: 10.1371/journal.pone.0076653
  30. Strain WD, Chaturvedi N. Review: the renin-angiotensin-aldosterone system and the eye in diabetes. Journal of the Renin-Angiotensin-Aldosterone System. 2002;3(4):243–246. doi: 10.3317/jraas.2002.045
  31. Guemes-Villahoz N, Burgos-Blasco B, Donate-Lopez J, et al. Retinal findings in COVID-19 patients with diabetes mellitus. Diabetes Res Clin Pract. 2020;168:108395. doi: 10.1016/j.diabres.2020.108395
  32. Casagrande M, Fitzek A, Püschel K, et al. Detection of SARS CoV 2 in human retinal biopsies of deceased COVID19 patients. Ocul Immunol Inflamm. 2020;28(5):721–725. doi: 10.1080/09273948.2020.1770301
  33. Li Y, Bai W, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728
  34. Keyhan SO, Fallahi HR, Cheshmi B. Dysosmia and dysgeusia due to the 2019 Novel Coronavirus; a hypothesis that needs further investigation. Maxillofac Plast Reconstr Surg. 2020;42(1):9. doi: 10.1186/s40902-020-00254-7
  35. Sawalha K, Adeodokun S, Kamoga GR. COVID-19-Induced Acute Bilateral Optic Neuritis. J Investig Med High Impact Case Rep. 2020;8:2324709620976018. doi: 10.1177/2324709620976018
  36. Zhou S, Jones-Lopez EC, Soneji DJ, et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis and Myelitis in COVID-19. J Neuroophthalmol. 2020;40(3):398–402. doi: 10.1097/WNO.0000000000001049

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. OCT of both optic nerve heads, 5 days after first symptoms.There is a significant increase of the retinal nerve fiber layer’s thickness in the peripapillar area of the right eye, protruding of the optic nerve tissue into the vitreous. Morphometric indices of the optic nerve head of the left eye - within the expected range for age

Download (507KB)
3. Fig. 2. Fundus photo, 5 days after first symptoms. Right (а) and left (b) eye fundi status. In both eyes, there are signs of non-proliferative diabetic retinopathy: intraretinal hemorrhages, single cotton-wool spots and hard exudates. On the right eye, optic disc edema and paleness with a hemorrhage are present. On the left eye, along the upper nasal vascular arcade, there is a single macroaneurysm surrounded by hard exudates

Download (140KB)
4. Fig. 3. OCT of both optic nerve heads, 6 months after the first examination. The neuroretinal rim thickness and that of the retinal nerve fiber layer in the parapapillar area of the right eye are significantly thinned, cup-to-disc ratio is increased up to 0.7. Morphometric indices of the optic nerve head of the left eye - within the expected range for age, without any dynamic changes when compared to the first examination

Download (476KB)
5. Fig. 4. Fundus photo, 6 months after the first examination. Right (а) and left (b) eye fundi status. On the right eye, a partial regression of retinal changes, atrophic optic nerve head changes may be noted. Significant angiosclerosis, “copper wire” sign on the 2nd and 3rd range arterioles are present. On the left eye, there is a macroaneurism regression, more retinal hemorrhages in the posterior pole and in the lower periphery

Download (148KB)
6. Fig. 5. AngioOCT of the optic nerve head, 6 months after the first examination. Optic nerve head perfusion indices of the right (а) and left (b) eye. Mean values of perfusion density are 32.9 and 40.5 %, respectively

Download (366KB)
7. Fig. 6. AngioOCT of the patient, 6 months after the first examination. Vascular density indices (mm/mm2) of the superficial vascular plexus in the macular area of the right (а) and the left (b) eye, and vascular density indices of the parapapillary plexus of the right (c) and the left (d) eye. A decrease in vascular density in all measurement areas on the involved side is noted

Download (437KB)

Copyright (c) 2021 Turgel V.A., Antonov V.A., Tultseva S.N., Shadrichev F.E., Grigorieva N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies