Cases of intraocular lens opacification in pseudophakic eyes: analysis of the results of microstructural studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Relevance. Currently, all over the world, during cataract surgeries, a huge number of intraocular lenses (IOLs) made of different materials are implanted. Alongside with the development of modern IOL materials and designs, publications about their opacities appear. The nature and the localization of IOL opacities mainly depend on the properties of the material out of which the lens is made. Polymethyl methacrylate (PMMA) currently rarely used to manufacture IOLs, tends to cloud in the optical center due to structural breakdown, forming “snowflake”-like cracks. Opacities of acrylic IOLs depend on the degree of hydrophilic properties of the material. The deposition of crystalline deposits in the optical zone of hydrophilic acrylic lenses leads to a significant decrease in visual acuity and requires IOL explantation. There is a definite dependence of the occurrence of opacities in hydrophilic acryl on the patient’s concomitant diseases. In hydrophobic acrylic IOLs, vacuoles form, and glistenings occurs. Herewith, visual functions, as a rule, do not suffer.

Purpose: to find out what structural changes in the IOL led to the need to remove them from pseudophakic eyes due to a decrease in visual acuity.

Materials and methods. Four clouded IOLs made from different materials were examined. The lenses were studied using a SUPRA 55VP scanning electron microscope (Carl Zeiss, Germany) using a secondary electron detector. Element distribution maps on the surface and inside the lenses were collected using an X-max 80 mm2 energy dispersive X-ray analysis detector (Oxford Instruments, UK).

Results. A hydrophilic lens with hydrophobic coating became cloudy 5 years after implantation. Hydroxyapatite crystals were found on all parts of the IOL along its surface. In a hydrophobic acrylic IOL, microvacuoles and cavities in the optical center were found using scanning electron microscopy. Two PMMA IOLs underwent self-destruction within 8 years after implantation. Chemical analysis of PMMA lenses did not reveal any inorganic compounds.

Conclusion. One of the complications of IOL implantation is an impairment of their transparency. Factors associated with IOL material and manufacturing, as well as the patient’s comorbidities, can lead to lens opacification at various terms after surgery.

About the authors

Inna A. Riks

Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russia

Email: riks0503@yandex.ru
SPIN-code: 4297-6543

МD, PhD, Assistant, Ophthalmology Department

Russian Federation, Saint Petersburg

Sergey Yu. Astakhov

Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russia

Email: astakhov73@mail.ru
SPIN-code: 7732-1150

МD, PhD, DMedSc, Professor, Head, Ophthalmology Department

Russian Federation, Saint Petersburg

Elena М. Ivankova

Institute of Macromolecular Compounds Russian Academy of Sciences

Email: ivelen@mail.ru

PhD, Senior Researcher

Russian Federation, Saint Petersburg

Irina E. Kuzmina

Academican I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russian Federation

Email: Kuzmina.irina07@mail.ru

МD, Ophthalmologist, Ophthalmology Department

Russian Federation, Saint Petersburg

Sanasar S. Papanyan

Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russia

Author for correspondence.
Email: Dr.papanyan@yandex.ru
ORCID iD: 0000-0003-3766-2211
SPIN-code: 9794-4692

МD, PhD, Ophtalmologist, Ophthalmology Department

Russian Federation, Saint Petersburg

Rafik Boutaba

Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russia

Email: boutabarafik@yahoo.fr

МD, Clinical Resident, Ophthalmology Department

Russian Federation, Saint-Petersburg

Maggie B. Ezugbaya

Academican I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russian Federation

Email: Maggie-92@mail.ru

аспирант кафедры офтальмологии с клиникой

Russian Federation, Saint Petersburg

Evgeni L. Akopov

Academican I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russian Federation

Email: elacop@mail.ru

МD, PhD, Assistant Professor, Ophthalmology Department

Russian Federation, Saint Petersburg

References

  1. Mamalis N, Brubaker J, Davis D, Werner L. Complications of foldable intraocular lenses requiring explantation or secondary intervention — 2007 survey update. J Cataract Refract Surg. 2008;34(9):1584-1591. https://doi.org/10.1016/j.jcrs. 2008.05.046.
  2. Mackey TA, Werner L, Soliman MM, et al. Opacification of two Hydrophilic acrylic intraocular lenses 3 months after implantation. Ophthalmic Surg Lasers Imaging. 2003;34(3):197-202. https://doi.org/10.3928/1542-8877-20030501-06.
  3. Neuhan IM, Stoduka P, Werner L, et al. Two opacification patterns of the same hydrophilic acrylic polymer: case reports and clinicopathological correlation. J Cataract Refract Surg. 2006;32(5): 879-886. https://doi.org/10.1016/j.jcrs.2006.01.076.
  4. Kim SM, Choi S. Clinical efficacy and complications of intraocular lens exchange for opacified intraocular lenses. Korean J Ophthalmol. 2008;22(4):228-235. https://doi.org/10.3341/kjo.2008.22.4.228.
  5. Гамидов А.А., Сипливый В.И., Федорук Н.А., и др. Помутнения интраокулярных линз: рабочая классификация с обзором проблемы // Офтальмология. Восточная Европа. – 2018. – Т. 8. – № 4. – С. 575–585. [Gamidov A, Siplivyi V, Fedoruk N, et al. Intraocular lens opacification: a working classification and review of the problem. Oftal’mologiya. Vostochnaya Evropa. 2018;8(4): 575-585. (In Russ.)]
  6. Аветисов С.Э., Гамидов А.А., Новиков И.А., и др. Химический микроанализ минеральных депозитов на поверхности эксплантированных интраокулярных линз из гидрофильного акрила // Вестник офтальмологии. – 2015. – Т. 131. – № 4. – С. 74–78. [Avetisov SE, Gamidov AA, Novikov IA, et al. Chemical microanalysis of mineral deposits on explanted hydrophilic acrylic intraocular lenses. Russian Annals of ophthalmology. 2015;131(4):74-78. (In Russ.)]. https://doi.org/10.17116/oftalma2015131474-78.
  7. Amar А, Soosan J. Complications in ocular surgery: a guide to managing the most common challenges. ISBNS.co.tt. Trinidad and Tobago; 2012. P. 343.
  8. Труфанов С.В., Текеева Л.Ю., Саловарова Е.П., и др. Дистрофии роговицы // Вестник офтальмологии. – 2018. – Т. 134. – № 5. – С. 118–125. [Trufanov SV, Tekeyeva LYu, Salovarova EP, et al. Corneal dystrophies. Russian Annals of Ophthalmology. 2018;134(5):118-125. (In Russ.)]. https://doi.org/10.17116/oftalma2018134051118.
  9. Труфанов С.В., Саловарова Е.П., Маложен С.А., Баг Р.З. Эндотелиальная дистрофия роговицы Фукса // Вестник офтальмологии. – 2017. – Т. 133. – № 6. – С. 106–112. [Trufanov SV, Salovarova EP, Malozhen SA, Bagh RZ. Fuchs endothelial corneal dystrophy. Russian Annals of Ophthalmology. 2017;133(6):106-112. (In Russ.)]. https://doi.org/10.17116/oftalma20171336106-112.
  10. Werner L. Glistenings and surface light scattering in intraocular lenses. J Cataract Refract Surg. 2010;36(8):1398-1420. https://doi.org/10.1016/j.jcrs.2010.06.003.
  11. Dahle N, Werner L, Fry L, Mamalis N. Localized, central optic snowflake degeneration of a PMMA intraocular lens: сlinical report with pathological correlation. Arch Ophthalmol. 2006;124(9): 1350-1353. https://doi.org/10.1001/archopht.124.9.1350.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Biomicroscopy: the phenomenon of “glistenings” in hydrophobic intraocular lens

Download (293KB)
3. Fig. 2. Photo of an explanted intraocular lens with calcifications in the optical part

Download (325KB)
4. Fig. 3. Biomicroscopy: polymethyl methacrylate intraocular lens – “snowflake”-like opacities

Download (184KB)
5. Fig. 4. Microphotography of the explanted intraocular lens Oculentis using a Supra 55VP scanning electron microscope (Carl Zeiss, Germany). Crystals of calcium hydroxyapatite: a – scale 10 μm; b – scale 2 μm

Download (478KB)
6. Fig. 5. Microphotography using a scanning electron microscope Supra 55VP (Carl Zeiss, Germany) of the explanted intraocular lens Oculentis. Small cracks and grooves are observed on the intraocular lens surface

Download (298KB)
7. Fig. 6. Micrograph using a Supra 55VP scanning electron microscope (Carl Zeiss, Germany). Intraocular lens made of hydrophobic acrylic with visible microcavities

Download (272KB)
8. Fig. 7. Micrographs obtained using the Supra 55VP scanning electron microscope (Carl Zeiss, Germany). IOL from PMMA – destruction of the structure of the lens material detected in the area of its opacity

Download (303KB)

Copyright (c) 2021 Riks I.A., Astakhov S.Y., Ivankova E.М., Kuzmina I.E., Papanyan S.S., Boutaba R., Ezugbaya M.B., Akopov E.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies