Eye microcirculation in glaucoma. Part 2. Disorders of regional hemodynamics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Glaucoma is one of the leading causes of blindness worldwide. The etiology of primary glaucoma is usually divided into mechanical and vascular mechanisms. Research of the vascular component of glaucoma was going on since the beginning of the last century with continuous improvement of diagnostic methods from invasive to high-tech non-contact ones. Modern and promising methods are: ultrasound examination in color Doppler mapping and pulsed Doppler modes, optical coherence tomography angiography, and laser speckle flowgraphy. The review describes specific for glaucoma blood flow changes in ocular vessels, correlating with functional and structural changes: decrease of vascular density in macular, parafoveolar, and peripapillary areas, decrease of the integral indicator of microcirculation, decrease of the indicators of volume and linear blood flow velocities in retinal and choroidal vessels, impaired retrobulbar blood circulation. The analysis of literature data is presented concerning the investigation of hemodynamic disturbances in ocular vessels in normotensive glaucoma and glaucoma in myopic eyes, in systemic blood flow disturbances (arterial hypertension and hypotension) in patients with glaucomatous optic neuropathy.

About the authors

Sergey Yu. Petrov

Helmholtz National Medical Research Center of Eye Diseases

Email: post@glaucomajournal.ru
ORCID iD: 0000-0001-6922-0464

MD, Dr. Sci. (Medicine)

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

Elena N. Orlova

Helmholtz National Medical Research Center of Eye Diseases

Email: nauka@igb.ru
ORCID iD: 0000-0002-5373-5620
SPIN-code: 1970-4728

MD, Cand. Sci. (Medicine)

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

Tatiana N. Kiseleva

Helmholtz National Medical Research Center of Eye Diseases

Email: tkisseleva@yandex.ru
ORCID iD: 0000-0002-9185-6407
SPIN-code: 5824-5991

MD, Dr. Sci. (Medicine)

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

Tatiana D. Okhotsimskaya

Helmholtz National Medical Research Center of Eye Diseases

Email: tata123@inbox.ru
ORCID iD: 0000-0003-1121-4314
SPIN-code: 9917-7103

MD, Cand. Sci. (Medicine)

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

Oksana I. Markelova

Helmholtz National Medical Research Center of Eye Diseases

Author for correspondence.
Email: levinaoi@mail.ru
ORCID iD: 0000-0002-8090-6034
SPIN-code: 6381-9851

MD

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

References

  1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224
  2. Neroev VV, Kiseleva OA, Bessmertny AM. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian Ophthalmological Journal. 2013;6(3):43–46. EDN: QIWMDX
  3. Sotimehin AE, Ramulu PY. Measuring disability in glaucoma. J Glaucoma. 2018;27(11):939–949. doi: 10.1097/IJG.000000000001068
  4. Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–393. doi: 10.1016/s1350-9462(02)00008-3
  5. Chen HS, Liu CH, Wu WC, et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017;58(9):3637–3645. doi: 10.1167/iovs.17-21846
  6. Cano J, Rahimi M, Xu BY, et al. Relationship between macular vessel density and total retinal blood flow in primary open-angle glaucoma. J Glaucoma. 2021;30(8):666–671. doi: 10.1097/IJG.0000000000001880
  7. Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018;125(4):578–587. doi: 10.1016/j.ophtha.2017.10.029
  8. Xu H, Kong XM. Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients. Zhonghua Yan Ke Za Zhi. 2017;53(2):98–103. doi: 10.3760/cma.j.issn.0412-4081.2017.02.006
  9. Tao A, Liang Y, Chen J, et al. Structure-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glaucoma. Microvasc Res. 2020;130:104005. doi: 10.1016/j.mvr.2020.104005
  10. Li F, Lin F, Gao K, et al. Association of foveal avascular zone area with structural and functional progression in glaucoma patients. Br J Ophthalmol. 2022;106(9):1245–1251. doi: 10.1136/bjophthalmol-2020-318065
  11. Zhang Y, Zhang S, Wu C, et al. Optical coherence tomography angiography of the macula in patients with primary angle-closure glaucoma. Ophthalmic Res. 2021;64(3):440–446. doi: 10.1159/000512756
  12. Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–5722. doi: 10.1167/iovs.17-22865
  13. Son KY, Han JC, Kee C. Parapapillary deep-layer microvasculature dropout is only found near the retinal nerve fibre layer defect location in open-angle glaucoma. Acta Ophthalmol. 2022;100(1): e174–e180. doi: 10.1111/aos.14856
  14. Shin JW, Song MK, Kook MS. Association between progressive retinal capillary density loss and visual field progression in open-angle glaucoma patients according to disease stage. Am J Ophthalmol. 2021;226:137–147. doi: 10.1016/j.ajo.2021.01.015
  15. Wang X, Chen J, Kong X, et al. Quantification of retinal microvascular density using optic coherence tomography angiography in primary angle closure disease. Curr Eye Res. 2021;46(7):1018–1024. doi: 10.1080/02713683.2020.1849728
  16. Petrov SYu, Okhotsimskaya TD, Filippova OM, et al. The influence of post-COVID-19 syndrome on microcirculation of the optic nerve head among patients with primary open-angle glaucoma. Ophthalmology Reports. 2024;17(1):29–37. (In Russ.) EDN: LPROFU doi: 10.17816/OV625738
  17. Jo YH, Sung KR, Shin JW. Comparison of peripapillary choroidal microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma. J Glaucoma. 2020;29(12):1152–1157. doi: 10.1097/IJG.0000000000001650
  18. Rao HL, Sreenivasaiah S, Riyazuddin M, et al. Choroidal microvascular dropout in primary angle closure glaucoma. Am J Ophthalmol. 2019;199:184–192. doi: 10.1016/j.ajo.2018.11.021
  19. Kim J.A., Lee E.J., Kim T.W. Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma. JAMA Ophthalmol. 2019;137(7):810–816. doi: 10.1001/jamaophthalmol.2019.1212
  20. Lin S, Cheng H, Zhang S, et al. Parapapillary choroidal microvasculature dropout is associated with the decrease in retinal nerve fiber layer thickness: a prospective study. Invest Ophthalmol Vis Sci. 2019;60(2):838–842. doi: 10.1167/iovs.18-26115
  21. Kim JA, Son DH, Lee EJ, et al. Intereye comparison of the characteristics of the peripapillary choroid in patients with unilateral normal-tension glaucoma. Ophthalmol Glaucoma. 2021;4(5):512–521. doi: 10.1016/j.ogla.2021.02.003
  22. Lee EJ, Han JC, Kee C. Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population. PLoS One. 2017;12(10):e0186236. doi: 10.1371/journal.pone.0186236
  23. Jo YH, Shin JW, Song MK, et al. Baseline choroidal microvasculature dropout as a predictor of subsequent visual field progression in open-angle glaucoma. J Glaucoma. 2021;30(8):672–681. doi: 10.1097/IJG.0000000000001853
  24. Park HY, Shin DY, Jeon SJ, et al. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma. JAMA Ophthalmol. 2019;137(6):681–688. doi: 10.1001/jamaophthalmol.2019.0422
  25. Bhalla M, Heisler M, Mammo Z, et al. Investigation of the peripapillary choriocapillaris in normal tension glaucoma, primary open-angle glaucoma, and control eyes. J Glaucoma. 2021;30(8):682–689. doi: 10.1097/IJG.0000000000001861
  26. Hashemi H, Fotouhi A, Yekta A, et al. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J Curr Ophthalmol. 2018;30(1):3–22. doi: 10.1016/j.joco.2017.08.009
  27. Erichev VP, Onishchenko AL, Kuroyedov AV, et al. Ophthalmologic risk factors for the development of primary open-angle glaucoma. Russian Journal of Clinical Ophthalmology. 2019;19(2):81–86. (In Russ.) EDN: ZSFTZJ doi: 10.32364/2311-7729-2019-19-2-81-86
  28. Jonas JB, Ohno-Matsui K, Panda-Jonas S. Optic nerve head histopathology in high axial myopia. J Glaucoma. 2017;26(2):187–193. doi: 10.1097/IJG.0000000000000574
  29. Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40(3):282–289. doi: 10.3109/02713683.2014.922193
  30. Wong TY, Klein BE, Klein R, et al. Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmology. 2003;110(1):211–217. doi: 10.1016/s0161-6420(02)01260-5
  31. Samra WA, Pournaras C, Riva C, et al. Choroidal hemodynamic in myopic patients with and without primary open-angle glaucoma. Acta Ophthalmol. 2013;91(4):371–375. doi: 10.1111/j.1755-3768.2012.02386.x
  32. Lin F, Li F, Gao K, et al. Longitudinal changes in macular optical coherence tomography angiography metrics in primary open-angle glaucoma with high myopia: a prospective study. Invest Ophthalmol Vis Sci. 2021;62(1):30. doi: 10.1167/iovs.62.1.30
  33. Suwan Y, Fard MA, Geyman LS, et al. Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol. 2018;136(5):507–513. doi: 10.1001/jamaophthalmol.2018.0776
  34. Na HM, Lee EJ, Lee SH, et al. Evaluation of peripapillary choroidal microvasculature to detect glaucomatous damage in eyes with high myopia. J Glaucoma. 2020;29(1):39–45. doi: 10.1097/IJG.0000000000001408
  35. Shin JW, Kwon J, Lee J, et al. Choroidal microvasculature dropout is not associated with myopia, but is associated with glaucoma. J Glaucoma. 2018;27(2):189–196. doi: 10.1097/IJG.0000000000000859
  36. Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci. 2011;52(8):5121–5129. doi: 10.1167/iovs.11-7364
  37. Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–450. doi: 10.1016/j.ajo.2009.04.029
  38. Ho M, Liu DT, Chan VC, et al. Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology. 2013;120(9):1909–1914. doi: 10.1016/j.ophtha.2013.02.005
  39. Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci. 2011;52(11):8438–8441. doi: 10.1167/iovs.11-8108
  40. Banitt M. The choroid in glaucoma. Curr Opin Ophthalmol. 2013;24(2):125–129. doi: 10.1097/ICU.0b013e32835d9245
  41. Hirooka K, Fujiwara A, Shiragami C, et al. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Exp Ophthalmol. 2012;40(6): 576–582. doi: 10.1111/j.1442-9071.2012.02762.x
  42. Hirooka K, Tenkumo K, Fujiwara A, et al. Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma. BMC Ophthalmol. 2012;12:29. doi: 10.1186/1471-2415-12-29
  43. Kurysheva NI, Kiseleva TN, Ardzhevnishvily TD, et al. The choroid and glaucoma: choroidal thickness measurement by means of optical coherence tomography. National Journal Glaucoma. 2013; (3–2):73–82. EDN: RRRAUX
  44. Usui S, Ikuno Y, Miki A, et al. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol. 2012;153(1):10–16.e1. doi: 10.1016/j.ajo.2011.05.037
  45. Eskina EN, Zykova AV. Early glaucoma risk factors in myopia. Ophthalmology. 2014;11(2):59–63. EDN: SFOWRD46.
  46. Mamikonyan VR, Shmeleva-Demir OA, Makashova NV, et al. Volume indicators of ocular hemodynamics in eyes with glaucoma associated with myopia with “normalized” pressure. National Journal Glaucoma. 2015;14(2):14–21. EDN: UBEYQT
  47. Konoplyannik EV, Dravitsa LV. Hemodynamic parameters and peripapillary retinal thickness in patients with primary open-angle glaucoma on the background of myopic refraction and in patients with myopia. Russian Journal of Clinical Ophthalmology. 2012;13(4):121–123. (In Russ.) EDN: PUURCP
  48. Aizawa N, Kunikata H, Shiga Y, et al. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14:113. doi: 10.1186/1471-2415-14-113
  49. Yokoyama Y, Aizawa N, Chiba N, et al. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol. 2011;5:1721–1727. doi: 10.2147/OPTH.S23204
  50. Plange N, Remky A, Arend O. Colour Doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma. Br J Ophthalmol. 2003;87(6):731–736. doi: 10.1136/bjo.87.6.731
  51. Volkov VV, Sukhinina LB, Ustinova EI. Glaucoma, preglaucoma, ophthalmic hypertension. Leningrad: Meditsina; 1985. 216 p. (In Russ.) EDN: ZDPXEJ
  52. Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–221. doi: 10.1001/archopht.1995.01100020100038
  53. Kosior-Jarecka E, Wrobel-Dudzinska D, Lukasik U, et al. Ocular and systemic risk factors of different morphologies of scotoma in patients with normal-tension glaucoma. J Ophthalmol. 2017:1480746. doi: 10.1155/2017/1480746
  54. Nesterov AP, Aliab’eva Z, Lavrent’ev AV. Normal-pressure glaucoma: a hypothesis of pathogenesis. Russian Annals of Ophthalmology. 2003;119(2):3–6. (In Russ.) EDN: TUDHHD
  55. Tarasova LN, Grigor’eva EG, Abaimov MA, et al. Certain aspects of normal pressure glaucoma. Russian Annals of Ophthalmology. 2003;119(3):8–11. (In Russ.) EDN: TUDHUP
  56. Konieczka K, Erb C. Diseases potentially related to Flammer syndrome. EPMA J. 2017;8(4):327–332. doi: 10.1007/s13167-017-0116-4
  57. Konieczka K, Flammer J, Sternbuch J, et al. Leber‘s Hereditary Optic Neuropathy, Normal Tension Glaucoma, and Flammer Syndrome: Long Term Follow-up of a Patient. Klin Monbl Augenheilkd. 2017;234(4):584–587. doi: 10.1055/s-0042-119564
  58. Kwon J, Lee J, Choi J, et al. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma. Am J Ophthalmol. 2017;176:87–101. doi: 10.1016/j.ajo.2017.01.002
  59. Kim JH, Lee TY, Lee JW, et al. Comparison of the thickness of the lamina cribrosa and vascular factors in early normal-tension glaucoma with low and high intraocular pressures. Korean J Ophthalmol. 2014;28(6):473–478. doi: 10.3341/kjo.2014.28.6.473
  60. Koch EC, Arend KO, Bienert M, et al. Arteriovenous passage times and visual field progression in normal tension glaucoma. Scientific World Journal. 2013;2013:726912. doi: 10.1155/2013/726912
  61. Plange N, Kaup M, Remky A, et al. Prolonged retinal arteriovenous passage time is correlated to ocular perfusion pressure in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2008;246(8):1147–1152. doi: 10.1007/s00417-008-0807-6
  62. Duijm HF, van den Berg TJ, Greve EL. A comparison of retinal and choroidal hemodynamics in patients with primary open-angle glaucoma and normal-pressure gaucoma. Am J Ophthalmol. 1997;123(5):644–656. doi: 10.1016/s0002-9394(14)71077-3
  63. Butt Z, O’Brien C, McKillop G, et al. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci. 1997;38(3):690–696.
  64. Galassi F, Sodi A, Ucci F, et al. Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol. 2003;121(12):1711–1715. doi: 10.1001/archopht.121.12.1711
  65. Martinez A, Sanchez M. Ocular blood flow and glaucoma. Br J Ophthalmol. 2008;92(9):1301.
  66. Martinez A, Sanchez M. Ocular haemodynamics in pseudoexfoliative and primary open-angle glaucoma. Eye (Lond). 2008;22(4): 515–520. doi: 10.1038/sj.eye.6702676
  67. Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124(3):287–295. doi: 10.1016/s0002–9394(14)70820-7
  68. Ong K, Farinelli A, Billson F, et al. Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects. Ophthalmology. 1995;102(11): 1632–1638. doi: 10.1016/s0161-6420(95)30816-0
  69. Stroman GA, Stewart WC, Golnik KC, et al. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol. 1995;113(2):168–172. doi: 10.1001/archopht.1995.01100020050027
  70. Yuksel N, Anik Y, Altintas O, et al. Magnetic resonance imaging of the brain in patients with pseudoexfoliation syndrome and glaucoma. Ophthalmologica. 2006;220(2):125–130. doi: 10.1159/000090578
  71. Suzuki J, Tomidokoro A, Araie M, et al. Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imaging. Jpn J Ophthalmol. 2004;48(4):340–344. doi: 10.1007/s10384-004-0072-0
  72. Shiga Y, Omodaka K, Kunikata H, et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci. 2013;54(12):7699–706. doi: 10.1167/iovs.13-12930
  73. Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep. 2018;8(1):5343. doi: 10.1038/s41598-018-23149-0
  74. Takeyama A, Ishida K, Anraku A, et al. Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma. J Ophthalmol. 2018;2018:1751857. doi: 10.1155/2018/1751857
  75. Leeman M, Kestelyn P. Glaucoma and blood pressure. Hypertension. 2019;73(5):944–950. doi: 10.1161/HYPERTENSIONAHA.118.11507
  76. Yilmaz KC, Sur Gungor S, Ciftci O, et al. Relationship between primary open angle glaucoma and blood pressure. Acta Cardiol. 2020;75(1):54–58. doi: 10.1080/00015385.2018.1549004
  77. Yoshikawa T, Obayashi K, Miyata K, et al. Increased nighttime blood pressure in patients with glaucoma: cross-sectional analysis of the LIGHT study. Ophthalmology. 2019;126(10):1366–1371. doi: 10.1016/j.ophtha.2019.05.019
  78. Skrzypecki J, Ufnal M, Szaflik JP, et al. Blood pressure and glaucoma: at the crossroads between cardiology and ophthalmology. Cardiol J. 2019;26(1):8–12. doi: 10.5603/CJ.2019.0008
  79. Holappa M, Vapaatalo H, Vaajanen A. Many faces of renin-angiotensin system — focus on eye. Open Ophthalmol J. 2017;11:122–142. doi: 10.2174/1874364101711010122
  80. Grzybowski A, Och M, Kanclerz P, et al. Primary open angle glaucoma and vascular risk factors: a review of population based studies from 1990 to 2019. J Clin Med. 2020;9(3):761. doi: 10.3390/jcm9030761
  81. Gangwani RA, Lee JWY, Mo HY, et al. The correlation of retinal nerve fiber layer thickness with blood pressure in a chinese hypertensive population. Medicine (Baltimore). 2015;94(23):e947. doi: 10.1097/MD.0000000000000947
  82. Bowe A, Grunig M, Schubert J, et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathya systematic review and meta-analysis. Am J Hypertens. 2015;28(9):1077–1082. doi: 10.1093/ajh/hpv016
  83. Jammal AA, Berchuck SI, Mariottoni EB, et al. Blood pressure and glaucomatous progression in a large clinical population. Ophthalmology. 2022;129(2):161–170. doi: 10.1016/j.ophtha.2021.08.021
  84. Melgarejo JD, Lee JH, Petitto M, et al. Glaucomatous optic neuropathy associated with nocturnal dip in blood pressure: findings from the Maracaibo aging study. Ophthalmology. 2018;125(6): 807–814. doi: 10.1016/j.ophtha.2017.11.029
  85. Raman P, Suliman NB, Zahari M, et al. Low nocturnal diastolic ocular perfusion pressure as a risk factor for NTG progression: a 5-year prospective study. Eye (Lond). 2018;32(7):1183–1189. doi: 10.1038/s41433-018-0057-8
  86. Pillunat KR, Spoerl E, Jasper C, et al. Nocturnal blood pressure in primary open-angle glaucoma. Acta Ophthalmol. 2015;93(8): e621–e626. doi: 10.1111/aos.12740
  87. Lee K, Yang H, Kim JY, et al. Risk factors associated with structural progression in normal-tension glaucoma: intraocular pressure, systemic blood pressure, and myopia. Invest Ophthalmol Vis Sci. 2020;61(8):35. doi: 10.1167/iovs.61.8.35

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».