The influence of post-COVID-19 syndrome on microcirculation of the optic nerve head among patients with primary open-angle glaucoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Glaucoma is one of the leading causes of blindness in the world. This is a multifactorial ophthalmopathology, which also results from impaired microcirculation in the optic nerve. One of the diseases affecting ocular blood flow is acute coronavirus infection (COVID-19).

AIM: The aim of this study is the assessment of blood flow parameters of the optic nerve head in patients with primary open-angle glaucoma (POAG) against the background of post-COVID-19 syndrome using laser speckle flowgraphy.

MATERIALS AND METHODS: The study included 40 patients with advanced stage primary open-angle glaucoma who had COVID-19 within the previous 3 months. Patients were divided into 2 subgroups depending on the severity of the disease. The comparison group consisted of 20 individuals with an advanced stage of primary open-angle glaucoma who did not have COVID-19. All subjects were over 60 years old and had normal blood pressure parameters. Optic nerve head blood flow was measured using the LSFG-NAVI device (Japan) and assessed by LSFG Analyzer software. MBR parameters (MA, MV and MT), as well as pulse wave indicators (Skew, BOS, BOT, RR, FR, FAI, ATI and RI) were analyzed.

RESULTS: The most significant decrease was found for the MV and MT parameters, reflecting the blood flow in large vessels and the microvasculature of the optic disc. MV decrease by 20%, MT — by 23%, MA — by 16% were noted, as well as pulse wave parameter changes, in patients with an advanced stage of primary open-angle glaucoma, post-COVID syndrome after moderate COVID-19 compared with patients with an advanced stage of primary open-angle glaucoma who did not have COVID-19 (p ≤ 0.05).

CONCLUSIONS: Laser speckle flowgraphy allows rapid and effective assessment of ocular blood flow. Parameters estimated at the examination may be considered as new biomarkers for the detection and evaluation of vascular diseases.

About the authors

Sergey Yu. Petrov

Helmholtz National Medical Research Center of Eye Diseases

Email: glaucomatosis@gmail.com
ORCID iD: 0000-0001-6922-0464

MD, Dr. Sci. (Medicine)

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

Tatiana D. Okhotsimskaya

Helmholtz National Medical Research Center of Eye Diseases

Email: tata123@inbox.ru
ORCID iD: 0000-0003-1121-4314

MD, Cand. Sci. (Medicine)

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

Olga M. Filippova

Helmholtz National Medical Research Center of Eye Diseases

Email: changa2@mail.ru
ORCID iD: 0000-0001-9082-4537

MD, Cand. Sci. (Medicine)

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

Oksana I. Markelova

Helmholtz National Medical Research Center of Eye Diseases

Author for correspondence.
Email: Levinaoi@mail.ru
ORCID iD: 0000-0002-8090-6034

graduate student

Russian Federation, 14/19 Sadovaya-Chernogryazskaya st., Moscow, 105062

References

  1. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013
  2. Verticchio VA, Harris A, Stoner AM, et al. Choroidal thickness and primary open-angle glaucoma — a narrative review. J Clin Med. 2022;11(5):1209. doi: 10.3390/jcm11051209
  3. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224
  4. Malishevskaya TN, Kiseleva TN, Filippova YE, et al. Аntioxidant status and lipid metabolism in patients with different forms of primary open-angle glaucoma progression. Ophthalmology in Russia. 2020;17(4):761–770. EDN: YNIBFA doi: 10.18008/1816-5095-2020-4-761-770
  5. Takeda Y, Takahashi N, Kiyota N, et al. Predictive potential of optical coherence tomography parameters for the prognosis of decreased visual acuity after trabeculectomy in open-angle glaucoma patients with good vision. BMC Ophthalmol. 2023;23(1):399. doi: 10.1186/s12886-023-03145-3
  6. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38(Suppl): S3–S6. doi: 10.1016/0039-6257(94)90041-8
  7. Kurysheva NI. Vascular theory of the glaucomatous optic neuropathy pathogenesis: the leading concepts of vascular theory. Part 3. National Journal Glaucoma. 2018;17(1):101–112. EDN: YTBXUU doi: 10.25700/NJG.2018.01.10
  8. Quigley HA, Addicks EM, Green WR, et al. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–649. doi: 10.1001/archopht.1981.03930010635009
  9. Zhao D, Cho J, Kim MH, et al. The association of blood pressure and primary open-angle glaucoma: a meta-analysis. Am J Ophthalmol. 2014;158(3):615–627. doi: 10.1016/j.ajo.2014.05.029
  10. Gardiner SK, Cull G, Fortune B. Retinal vessel pulsatile characteristics associated with vascular stiffness can predict the rate of functional progression in glaucoma suspects. Invest Ophthalmol Vis Sci. 2023;64(7):30. doi: 10.1167/iovs.64.7.30
  11. Li RS, Pan YZ. The vessel and primary glaucoma. Zhonghua Yan Ke Za Zhi. 2017;53(10):791–796. doi: 10.3760/cma.j.issn.0412-4081.2017.10.016
  12. Kiseleva TN, Petrov SYu, Okhotsimskaya TD, Markelova OI. State-of-the-art methods of qualitative and quantitative assessment of eye microcirculation. Russian Ophthalmological Journal. 2023;16(3):152–158. (In Russ.) EDN: ORBVWL doi: 10.21516/2072-0076-2023-16-3-152-158
  13. Petrov SYu, Okhotsimskaya TD, Markelova OI. Assessment of ocular blood flow age-related changes using laser speckle flowgraphy. Point of view. East-West. 2022;1:23–26. EDN: IKLICH doi: 10.25276/2410-1257-2022-1-23-26
  14. Neroeva NV, Zaytseva OV, Okhotsimskaya TD, et al. Age-related changes of ocular blood flow detecting by laser speckle flowgraphy. Russian Ophthalmological Journal. 2023;16(2):54–62. EDN: FFSEQV doi: 10.21516/2072-0076-2023-16-2-54-62
  15. Cenko E, Badimon L, Bugiardini R, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute Cardio Vascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021;117(14):2705–2729. doi: 10.1093/cvr/cvab298
  16. Tohamy D, Sharaf M, Abdelazeem K, et al. Ocular manifestations of post-acute COVID-19 syndrome. J Multidiscip Healthc. 2021;14:1935–1944. doi: 10.2147/JMDH.S323582
  17. Schlick S, Lucio M, Wallukat G, et al. Post-COVID-19 syndrome: retinal microcirculation as a potential marker for chronic fatigue. Int J Mol Sci. 2022;23(22):13683. doi: 10.3390/ijms232213683
  18. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. doi: 10.1016/j.ejim.2020.04.037
  19. Hohberger B, Ganslmayer M, Lucio M, et al. Retinal microcirculation as a correlate of a systemic capillary impairment after severe acute respiratory syndrome coronavirus 2 infection. Front Med (Lausanne). 2021;8:676554. doi: 10.3389/fmed.2021.676554
  20. Janiuk K, Jabłońska E, Garley M. Significance of NETs formation in COVID-19. Cells. 2021;10(1):151. doi: 10.3390/cells10010151
  21. Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–631. doi: 10.1038/s41591-021-01292-y
  22. Rousseau A, Fenolland JR, Labetoulle M. SARS-CoV-2, COVID-19 and the eye: An update on published data. J Fr Ophtalmol. 2020;43(7):642–652. (In French) doi: 10.1016/j.jfo.2020.05.003
  23. Marinho PM, Marcos AA, Romano AC, et al. Retinal findings in patients with COVID-19. Lancet. 2020;395(10237):1610. doi: 10.1016/S0140-6736(20)31014-X
  24. Turgel VA, Antonov VA, Tultseva SN, et al. COVID-19 as a new risk factor for the development of acute vascular diseases of the optic nerve and retina. Ophthalmology Journal. 2021;14(2):105–115. EDN: XSWAKS doi: 10.17816/OV64115
  25. Korelina VE, Gazizova IR, Kuroyedov AV, Didur MD. Glaucoma progression during the COVID-19 pandemics. Russian Journal of Clinical Ophthalmology. 2021;21(3):147–152. EDN: NJZLNX doi: 10.32364/2311-7729-2021-21-3-147-152
  26. Turgel VА, Tultseva SN. Study of the retina and optic nerve microvascular bed using optical coherence tomography-angiography in post-COVID-19 patients. Regional Blood Circulation and Microcirculation. 2021;20(4):21–32. doi: 10.24884/1682-6655-2021-20-4-21-32
  27. Szkodny D, Wylęgała E, Sujka-Franczak P, et al. Retinal OCT findings in patients after COVID infection. J Clin Med. 2021;10(15):3233. doi: 10.3390/jcm10153233

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies