Corneal changes after fulguration and cross-linking in experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Severe progressive forms of infectious keratitis are often associated with the risk of violation of the structural integrity of the eyeball and the development of endophthalmitis. In the presence of negative dynamics against the background of conservative etiotropic therapy for severe keratitis, it is advisable to use surgical methods of treatment. The combination of two surgical methods of influencing a pharmacoresistant infectious process in the cornea — cross-linking and fulguration — is promising and requires further investigation.

AIM: In the experiment, to evaluate the effect on the corneal tissue of various modes of direct current fulguration, as well as in combination with cross-linking as well.

MATERIALS AND METHODS: An in vivo experimental study was carried out on 19 rabbits (38 eyes) of the Soviet Chinchilla breed, the average body weight of the animals was 2.5–4.0 kg. Depending on the stage of the study, the type and power of exposure during fulguration, the rabbits were divided into 3 groups.

RESULTS: When the cornea was exposed to fulguration in mode 5, the changes covered only 10–15 % of the anterior stroma, about 50 μm, and both clinically and histologically were not sufficient. When exposed to mode 6 and 7 after 3 months, changes in the stromal structure extended by about 150 µm. When using mode 8, there was a slight proliferation of connective tissue between the Descemet’s membrane and the endothelium. The combination of cross-linking with fulguration made it possible to obtain a more compact structure of the anterior layers of the corneal stroma and stability of the epithelium.

CONCLUSIONS: Fulguration may be a relatively safe treatment for the cornea in pharmacoresistant progressive keratitis. Fulguration and corneal cross-linking can potentiate each other’s effect. Fulguration mode 7 (1.5 W) is optimal at corneal exposition for the eradication of infectious agents.

About the authors

Rafik Boutaba

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: dr.rafik_boutaba@mail.ru
ORCID iD: 0000-0002-3700-8255
SPIN-code: 3416-3915
Russian Federation, 6–8 L’va Tolstogo st, Saint-Petersburg, 197022

Sergey V. Trufanov

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: trufanov05@mail.ru
ORCID iD: 0000-0003-4360-793X
SPIN-code: 1603-8931

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Inna A. Riks

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: riks0503@yandex.ru
ORCID iD: 0000-0002-5187-1047
SPIN-code: 4297-6543

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Maggie Ezugbaya

Diagnostic Center No. 7 (ocular)

Email: maggie-92@mail.ru
ORCID iD: 0000-0002-0421-1804
Russian Federation, Saint Petersburg

Galina Yu. Yukina

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: pipson@inbox.ru
ORCID iD: 0000-0001-8888-4135
SPIN-code: 2533-2084

Cand. Sci. (Biology), Assistant Professor

Russian Federation, Saint Petersburg

Elena G. Sukhorukova

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: len48@inbox.ru
ORCID iD: 0000-0001-5521-7248
SPIN-code: 2115-9041

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Sanasar S. Papanyan

Diagnostic Center No. 7 (ocular)

Email: Dr.papanyan@yandex.ru
ORCID iD: 0000-0003-3766-2211
SPIN-code: 9794-4692

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Svetlana L. Nikolaenko

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: nikolaenkos@yandex.ru
ORCID iD: 0000-0002-5184-3775

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Olga V. Gorchakova

Academician I.P. Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: gorchakova-spmu@yandex.ru
ORCID iD: 0000-0001-5458-4329

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Raj A, Bahadur H, Dhasmana R. Outcome of therapeutic penetrating keratoplasty in advanced infectious keratitis. J Curr Ophthalmol. 2018;30(4):315–332. doi: 10.1016/j.joco.2018.04.0017
  2. Tuli S, Gray M. Surgical management of corneal infections. Curr Opin Ophthalmol. 2016;27(4):340–347. doi: 10.1097/ICU.0000000000000274
  3. Trufanov SV, Shakhbazyan NP, Zaitsev AV, Rozinova VN. Surgical management of infectious keratitis. The Russian Annals of Ophthalmology. 2021;137(4):128135. (In Russ.) doi: 10.17116/oftalma2021137041128
  4. Trufanov SV, Zaitsev AV, Shakhbazyan NP. Crosslinking and fulguration in the treatment of Acanthamoebic keratitis. Ophthalmology in Russia. 2020;17(4):725–732. (In Russ.) doi: 10.18008/1816-5095-2020-4-725-732
  5. Tsugita A, Okada Y, Uehara K. Photosensitized inactivation of ribonucleic acids in the presence of riboflavin. Biochim Biophys Acta. 1965;103(2):360–363. doi: 10.1016/0005-2787(65)90182-6
  6. Goodrich RP, Edrich RA, Li J, Seghatchian J. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends. Transfus Apher Sci. 2006;35(1):5–17. doi: 10.1016/j.transci.2006.01.007
  7. Marschner S, Goodrich R. Pathogen reduction technology treatment of platelets, plasma and whole blood using riboflavin and UV light. Transfus Med Hemother. 2011;38(1):8–18. doi: 10.1159/000324160
  8. Ruane PH, Edrich R, Gampp D, et al. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion. 2004;44(6):877–885. doi: 10.1111/j.1537-2995.2004.03355
  9. Reddy HL, Dayan AD, Cavagnaro J, et al. Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev. 2008;22(2):133–153. doi: 10.1016/j.tmrv.2007.12.003
  10. Khan YA, Kashiwabuchi RT, Martins SA, et al. Riboflavin and ultraviolet light а therapy as an adjuvant treatment for medically refractive Acanthamoeba keratitis. Ophthalmology. 2011;118(2): 324–331. doi: 10.1016/j.ophtha.2010.06.041
  11. Garduño-Vieyra L, Gonzalez-Sanchez CR, Hernandez-Da Mota SE. Ultraviolet — a light and riboflavin therapy for Acanthamoeba keratitis. Case Rep Ophthalmol. 2011;2(2):291–295. doi: 10.1159/000331707
  12. Berra M, Galperin G, Boscaro G, et al. Treatment of Acanthamoeba keratitis by corneal cross-linking. Cornea. 2013;32(2):174–178. doi: 10.1097/ICO.0b013e31825cea99
  13. Del Buey MA, Cristobal JA, Casas P, et al. Evaluation of in vitro efficacy of combined riboflavin and ultraviolet A for Acanthamoeba isolates. Am J Ophthalmol. 2012;153(3):399–404. doi: 10.1016/j.ajo.2011.07.025
  14. Lamy R, Chan E, Good SD, et al. Riboflavin and ultraviolet A as adjuvant treatment against Acanthamoeba cysts. Clin Exp Ophthalmol. 2016;44(3):181–187. doi: 10.1111/ceo.12644
  15. Kashiwabuchi RT, Carvalho FRS, Khan YA, et al. Assessing efficacy of combined riboflavin and UV-A light (365 nm) treatment of Acanthamoeba trophozoites. Investig Ophthalmol Vis Sci. 2011;52(13):9333–9338. doi: 10.1167/iovs.11-8382
  16. Price MO, Price FW Jr. Corneal cross-linking in the treatment of corneal ulcers. Curr Opin Ophthalmol. 2016;27(3):250–255. doi: 10.1097/ICU.0000000000000248
  17. Kasparova EA, Zajcev AV, Kasparova EA, Kasparov AA. Micro diathermocoagulation in the treatment of infectious corneal ulcers. Ophthalmology in Russia. 2016;13(3):157–162. (In Russ.) doi: 10.18008/1816-5095-2016-3-157-162
  18. Patent RU No. 2732696/ 2020 Sept 21. Nespor Radek (CZ). A portable device used primarily for cauterization and drying by spark for cauterization and drying by means of a spark discharge. Moscow: FIPS. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Coagulates on the rabbit cornea, mode 8

Download (250KB)
3. Fig. 2. Rabbit eye during cross-linking

Download (194KB)
4. Fig. 3. Fragment of the cornea after exposure in subgroup 1a. Fulguration, mode 5. Stained with hematoxylin and eosin. Magnification ×100

Download (103KB)
5. Fig. 4. Fragment of the cornea 3 months after exposure in subgroup 1a. Fulguration, mode 6. Stained with hematoxylin and eosin. Magnification ×40

Download (61KB)
6. Fig. 5. Fragment of the cornea after exposure in subgroup 1a. Fulguration, mode 7. Stained with hematoxylin and eosin. Magnification ×100

Download (126KB)
7. Fig. 6. Fragment of the cornea after exposure in subgroup 1a. Fulguration, mode 8. Stained with hematoxylin and eosin. Magnification ×40

Download (134KB)
8. Fig. 7. Fragment of the cornea after exposure in subgroup 1a. Crosslinking. Stained with hematoxylin and eosin. Magnification ×100

Download (115KB)
9. Fig. 8. Fragment of the cornea after exposure in subgroup 1b. Cross-linking + Fulguration, mode 5. Stained with hematoxylin and eosin. Magnification ×40

Download (68KB)
10. Fig. 9. Fragment of the cornea after exposure in subgroup 1b. Crosslinking + Fulguration, mode 6. Stained with hematoxylin and eosin. Magnification ×100

Download (126KB)
11. Fig. 10. Fragment of the cornea after exposure in subgroup 1b. Crosslinking + Fulguration, mode 7. Stained with hematoxylin and eosin. Magnification ×40

Download (48KB)
12. Fig. 11. Fragment of the cornea after exposure in subgroup 1b. Cross-linking + Fulguration, mode 8. Stained with hematoxylin and eosin. Magnification ×100

Download (81KB)
13. Fig. 12. Fragment of the cornea after exposure in group 2. Fulguration, mode 6. Stained with hematoxylin and eosin. Magnification ×100

Download (162KB)
14. Fig. 13. Fragment of the cornea after exposure in group 2. Fulguration, mode 7. Stained with hematoxylin and eosin. Magnification ×40

Download (74KB)
15. Fig. 14. Fragment of the cornea after exposure in group 2. Cross-linking + fulguration, mode 6. Stained with hematoxylin and eosin. Magnification ×40

Download (45KB)
16. Fig. 15. Fragment of the cornea after exposure in subgroup 2. Crosslinking + fulguration, mode 7. Stained with hematoxylin and eosin. Magnification ×40

Download (146KB)
17. Fig. 16. Fragment of the cornea after exposure in group 3. Fulguration, mode 7. Leukocytes in the stroma of the cornea. Stained with hematoxylin and eosin. Magnification ×100

Download (140KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies