Efficacy of micropulse cyclophotocoagulation in acute angle-closure glaucoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: An improved technique of cyclophotocoagulation appeared — cyclophotocoagulation in micropulse mode with splitting of the continuous stream of laser energy into short micropulse series with intervals.

AIM: The aim of the study is to clinically evaluate the efficacy and the safety of micropulse cyclophotocoagulation for acute angle-closure glaucoma jugulation.

MATERIALS AND METHODS: In the study, 14 patients with acute angle-closure glaucoma with 3–7 days duration were included. The mean intraocular pressure was 35.1 ± 2.4 mm Hg against the background of hypotensive therapy, best corrected visual acuity was from 0.005 to 0.3. All patients on admission underwent laser iridotomy, consistent peripheral colobomas of the iris were obtained. On the following day, taking into account the intraocular pressure level of 30–36 mm Hg against the background of hypotensive therapy, all patients underwent micropulse cyclophotocoagulation with Cyclo G6® Glaucoma Laser System (USA).

RESULTS: After surgery, there were no complications noted. The pain syndrome was completely eliminated in all patients on the first day after the procedure. Intraocular pressure decreased in average to 18.1 ± 2.8 mm Hg. Within 3–18 months after micropulse cyclophotocoagulation, phacoemulsification was performed in 9 eyes. During the 2 years of the follow-up period, intraocular pressure in all eyes remained normal, from 16 to 23 mm Hg, best-corrected visual acuity varied from 0.4 to 0.9.

CONCLUSIONS: Cyclophotocoagulation in micropulse mode allowed an effective and safe lowering of intraocular pressure to normal values in all eyes with acute angle-closure glaucoma; this provided pain relief and preservation of visual functions during the follow-up period up to 2 years.

About the authors

Oleg V.  Kolenko

S. Fyodorov Eye Microsurgery Federal State Institution, Khabarovsk Branch; Postgraduate Institute for Public Health Workers; Far-Eastern State Medical University

Email: naukakhvmntk@mail.ru
ORCID iD: 0000-0001-7501-5571
SPIN-code: 5775-5480
Scopus Author ID: 6506683725
ResearcherId: AAI-2976-2020

Dr. Sci. (Med.), director of the Khabarovsk Branch; head of the Ophthalmology Chair; professor of the General and Clinical Surgery Chair

Russian Federation, Khabarovsk; Khabarovsk; Khabarovsk

Natalia V. Postupaeva

S. Fyodorov Eye Microsurgery Federal State Institution, Khabarovsk Branch; Postgraduate Institute for Public Health Workers

Author for correspondence.
Email: naukakhvmntk@mail.ru
ORCID iD: 0000-0002-5364-4964
SPIN-code: 4279-5249
Scopus Author ID: 57980134700
ResearcherId: AAK-8765-2021

МD, Cand. Sci. (Med.), ophthalmologist; assistant professor

Russian Federation, Khabarovsk; Khabarovsk

Alexey V. Postupaev

S. Fyodorov Eye Microsurgery Federal State Institution, Khabarovsk Branch

Email: naukakhvmntk@mail.ru
ORCID iD: 0000-0002-8028-9267
SPIN-code: 3290-9709
Scopus Author ID: 57980327300

ophthalmologist

Russian Federation, Khabarovsk

Evgenii L. Sorokin

S. Fyodorov Eye Microsurgery Federal State Institution, Khabarovsk Branch; Far-Eastern State Medical University

Email: naukakhvmntk@mail.ru
ORCID iD: 0000-0002-2028-1140
SPIN-code: 4516-1429
Scopus Author ID: 7006545279
ResearcherId: AAI-2986-2020

Dr. Sci. (Med.), Professor; professor of the General and Clinical Surgery Chair

Russian Federation, Khabarovsk; Khabarovsk

References

  1. Botabekova TK, Dzhumatayeva ZA, Begimbaeva GE, Chuykeeva EH. Peculiarities of block formation in primary angle-closure glaucoma. National Journal glaucoma. 2013;(1):16–19. (In Russ.)
  2. Neroev VV, Zakharova EK, Proskachina TR, et al. Some ethnic peculiarities of anatomic and topographic parameters of eyeball structures in the indigenous inhabitants of the Republic of Sakha suffering from glaucoma. Russian Ophthalmological Journal. 2013;6(2):52–57. (In Russ.)
  3. Egorov EA, editor. Glaukoma. Natsional’noe rukovodstvo. Moscow: GEOTAR-Media, 2019. 384 p. (In Russ.)
  4. Lee EJ, Kim T-W, Lee KM, et al. Factors associated with the retinal nerve fiber layer loss after acute primary angle closure: a prospective EDI-OCT Study. PloS One. 2017;12(1): e0168678. doi: 10.1371/journal.pone.0168678
  5. Oganezova ZhG. Oftalmolog — nevrologu: chto mozhet skryvat golovnaya ili litsevaya bol. Russian Medical Journal. 2017;25(24):1796–1798. (In Russ.)
  6. Gavrilova TV, Chereshneva MV, Shabalin KA, Sobyanin NA. Analiz obrashchaemosti patsientov s sindromom “krasnogo glaza” v punkt neotlozhnoi oftal’mologicheskoi pomoshchi g. Permi. Reflection. 2016;(3):24–26. (In Russ.)
  7. Kan AS, Konovalova OS, Gumenyuk IV, et al. Analiz obrashchenii patsientov s ostrym bolevym sindromom pri melkoi perednei kamere i metodov reabilitatsii. Reflection. 2016;(3):34–35. (In Russ.)
  8. Nefedov NA, Alexandrov AS, Alexandrova LA, et al. Structure of urgent hospitalization of patients with ophthalmological pathology. Modern technologies in ophthalmology. 2020;(3):30–31. (In Russ.) doi: 10.25276/2312–4911–2020–3–30–31
  9. Kolesnichenko AM, Afanas’ev SN. Klinicheskii sluchai maskirovki ostrogo pristupa glaukomy pod ostroe narushenie mozgovogo krovoobrashcheniya. Mnogoprofil’nyi statsionar. 2017;4(2):86–87. (In Russ.)
  10. Patent RUS № 2184509/ 10.07.02. Semenov AD, Gerasimov OV, Romashenkov FA, Tjuljaev AP. Method for treating acute glaucoma attack.
  11. Alekseev IB, Uzunyan DG, Aksirova MM. Sposob khirurgicheskogo lecheniya zakrytougolnoi glaukomy. Glaukoma. 2004;(4):38–43. (In Russ.)
  12. Ivanov DI. Zlokachestvennaya glaukoma (proyavleniya, patogenez, printsipy i tekhnika khirurgii, klinicheskie primery). Reflection. 2019;(1):55–57. (In Russ.)
  13. Goncharenko OV, Martsinkevich AO, Sakhnov SN, Rud’ LI. Vybor sposoba normalizatsii VGD u patsientov, perenesshikh ostryi pristup zakrytougolnoi glaukomy. Modern technologies in ophthalmology. 2017;(6):252–254. (In Russ.)
  14. Chan PP, Pang JC, Tham CC. Acute primary angle closure-treatment strategies, evidences and economical considerations. Eye (London). 2019;33(1):110–119. doi: 10.1038/s41433-018-0278-x
  15. Ryabtseva AA, Sergushev SG, Kyzy Shirinova UA. Primenenie nepronikayushchei YAG-lazernoi sklerotomii v lechenii ostrogo pristupa glaukomy. Point of view. East-West. 2014;(1):276–278. (In Russ.)
  16. Gavrilova IA, Plotnikova YuA, Chuprov AD. Opyt primeneniya transskleralnoi diodlazernoi tsiklofotokoagulyatsii na glazakh s sokhrannymi zritel’nymi funktsiyami. Point of view. East-West. 2014;(2):31–32. (In Russ.)
  17. Balalin SV, Efremova TG, Potapova VN. Application of anti-VEGF drugs and trans-scleral cyclophotocoagulation in the treatment of neovascular glaucoma with diabetes mellitus. Practical medicine. 2016;(6):12–14. (In Russ.)
  18. Shvailikova IE, Belikova EI. The evaluation of the effectiveness of the optimized technique of transcleral diodlaser cyclophotocoagulation in patients with unstable glaucoma. Ophthalmology in Russia. 2021;18(3): 451–458. (In Russ.) doi: 10.18008/1816-5095-2021-3-451-458
  19. Postupaev AV, Sorokin EL, Egorov VV, Postupaeva NV. Clinical efficiency of transscleral cyclophoto-coagulation for lowering of high level of intraocular pressure at primary angle-closure glaucoma caused by a lens swelling. Fyodorov journal of ophthalmic surgery. 2015;(1):23–26. (In Russ.)
  20. Egorova EV, Sokolovskaya TV, Uzunyan DG, Drobnitsa AA. Optimization of contact transscleral diode laser cyclophotocoagulation technique in patients with terminal glaucoma on the basis of ultrasound biomycroscopy. Fyodorov journal of ophthalmic surgery. 2013;(3):72–77. (In Russ.)
  21. Markova AA, Grigorieva IN, Pozdeyeva NA, Nikolayeva GA. Histological changes in the ciliary body after contact transscleral cyclophotocoagulation. Zdravookhranenie Chuvashii. 2019;(3):37–46. (In Russ.)
  22. Avetisov SE, Bol’Shunov AV, Khomchik OV, et al. Laser-induced increase of scleral hydropermiability in the treatment of resistant forms open-angle glaucoma. National Journal glaucoma. 2015;14(2):5–13. (In Russ.)
  23. Aquino MC, Barton K, Tan AM, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol. 2015;43(1):40–46. doi: 10.1111/ceo.12360
  24. Johnstone MA, Song S, Padilla S, et al. Microscope real-time video (MRTV), high-resolution OCT (HR-OCT) and histopathology (HP) to assess how transcleral micropulse laser (TML) affects the sclera, ciliary body (CB), muscle (CM), secretory epithelium (CBSE), suprachoroidal space (SCS) & aqueous outflow system. Investig Ophthalmol Vis Sci. 2019;60(9):2825.
  25. Ioshin IE, Tolchinskaya AI, Maksimov IV, et al. Evaluation of repeated micropulse cyclophotocoagulation in patients with refractory glaucoma. National Journal glaucoma. 2021;20(3):30–39. (In Russ.) doi: 10.25700/2078-4104-2021-20-3-30-39
  26. Kurysheva NI, Radzhabov MM, Tyulegenova AR. Transscleral cyclophotocoagulation in the micropulse mode in the treatment of the initial stage of primary open angle glaucoma. Modern technology in ophthalmology. 2020;(4):136–137. (In Russ.) doi: 10.25276/2312-4911-2020-4-136-137
  27. Panova AY, Katargina LA, Denisova EV, Sorokin AA. Immediate results of micropulse cyclophotocoagulation in glaucoma in children. Russian Pediatric Ophthalmology. 2022;17(3):21–29. (In Russ.) doi: 10.17816/rpoj107300
  28. Sokolovskaya TV, Tikhonova MI. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of congenital glaucoma. Fyodorov journal of ophthalmic surgery. 2019;(3):44–47. (In Russ.) doi: 10.25276/0235-4160-2019-3-44-47
  29. Souissi S, Baudouin C, Labbé A, Hamard P. Micropulse transscleral cyclophotocoagulation using a standard protocol in patients with refractory glaucoma naive of cyclodestruction. Eur J Ophthalmol. 2021;31(1):112–119. doi: 10.1177/1120672119877586
  30. Fili S, Vastardis I, Perdikakis G, Kolhlaas M. Transscleral cyclophotocoagulation with MicroPulse® laser versus cyclophotocoagulation with continuous diode laser in patients with open-angle glaucoma. Int Ophthalmol. 2022;42(2):525–539. doi: 10.1007/s10792-021-02023-5
  31. Yegorov VV, Postupayeva NV, Postupayev AV. Micropulse cyclophotocoagulation — a new approach to the surgical treatment of glaucoma. Public Health of the Far East. 2021;(4):43–47. (In Russ.) doi: 10.33454/1728-1261-2021-4-43-47
  32. Egorov VV, Postupaev AV, Postupaeva NV. Efficiency of micropulse cyclophotocoagulation in treatment of refractory glaucoma. Modern technologies in ophthalmology. 2022;(2):88–94. (In Russ.) doi: 10.25276/2312-4911-2022-2-88-94
  33. Egorov VV, Postupaev AV, Postupaeva NV. The results of using micropulse cyclophotocoagulation for the treatment of patients with primary open-angle glaucoma. Russian Journal of Clinical Ophthalmology. 2022;22(4):204–209. (In Russ.) doi: 10.32364/2311-7729-2022-22-4-204-209
  34. Egorov VV, Postupaev AV, Postupaeva NV, Marchenko AN. First experience using micropulse cyclophotocoagulation in complex treatment acute angle closure glaucoma. Modern technologies in ophthalmology. 2021;(1):71–74. (In Russ.) doi: 10.25276/2312-4911-2021-1-71-74
  35. Patent RUS № 2773802/ 09.06.22. Byul. No. 16. Postupaeva NV, Egorov VV, Postupaev AV. Method for treating an acute attack of angle-closure glaucoma.
  36. Bakunina NA, Kolesnikova LN. Changes of optical coherent tomography parameters after phacoemulsification in acute angle-closure glaucoma. Russian Ophthalmological Journal. 2017;10(2):10–16. (In Russ.) doi: 10.21516/2072-0076-2017-10-2-10-16

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Clinical cases of acute angle-closure glaucoma: a — a 69-year-old female patient J.; b — a 63-year-old female patient B. On admission: congestive redness of the eyeball vessels, corneal edema, shallow anterior chamber, dilated pupil of irregular shape

Download (159KB)
3. Fig. 2. A 69-year-old female patient J. The first day after micropulse cyclophotocoagulation: a — the cornea is transparent, increase in anterior chamber depth; b — redness of the eyeball vessels reduced, subconjunctival hemorrhage after an injection, areas of sector iris atrophy; c — consistent peripheral coloboma of the iris at the 1 o’clock position

Download (155KB)
4. Fig. 3. A 63-year-old female patient B. The first day after micropulse cyclophotocoagulation: a — the cornea is transparent, increase in anterior chamber depth, partially ruptured posterior synechiae in the pupil area; b — redness of the eyeball decreased; c — consistent peripheral colobomas of the iris at 10, 1, 7 o’clock positions

Download (153KB)
5. Fig. 4. Dynamics of intraocular pressure level after micropulse cyclophotocoagulation during 2 years

Download (160KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies