Modern approach to the diagnosis of normal tension glaucoma taking into account the features of its pathogenesis

Cover Page

Cite item

Abstract

Normal tension glaucoma was isolated as a separate clinical form of primary open-angle glaucoma at the end of the 20th century. In the article, various points of view on the development of this most difficultly diagnosed variety of glaucoma, as well as modern concepts of the pathogenesis of normal tension glaucoma which determine the strategy of a new approach to its diagnosis, are reviewed in the historical aspect.

About the authors

Irina L. Simakova

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: irina.l.simakova@gmail.com
ORCID iD: 0000-0001-8389-0421
SPIN-code: 3422-5512
Scopus Author ID: 7003824052
ResearcherId: M - 3460-2016

Doctor of Medical Science, Associate Professor at the Department of Ophthalmology

Russian Federation, Saint Petersburg

Al’fina R. Suleimanova

S.M. Kirov Military Medical Academy

Email: alfinkamuse1@gmail.com

Ophthalmologist

Saint Petersburg

References

  1. Волков В.В. Глаукома при псевдонормальном давлении. Рук-во для врачей. – М.: Медицина, 2001. – 349 с. [Volkov VV. Glaukoma pri psevdonormal’nom davlenii. Ruk-vo dlya vrachey. Мoscow: Meditsina; 2001. 349 р. (In Russ.)]
  2. Волков В.В. Глаукома открытоугольная. – Москва: МИА, 2008. – 347 с. [Volkov VV. Glaukoma otkrytougol’naya. Moscow: Med. inform. agentstvo; 2008. 347 р. (In Russ.)]
  3. Волков В.В. Существенный элемент глаукоматозного процесса, не учитываемый в клинической практике // Офтальмологический журнал. – 1976. – Т. 31. – № 7. – С. 500–504. [Volkov VV. Sushchestvennyy element glaukomatoznogo protsessa, ne uchityvayemyy v klinicheskoy praktike. Oftal’mologicheskii zhurnal. 1976;31(7):500-504. (In Russ.)]
  4. Müller H. Anatomische beiträge zur ophthalmologie. Arch Ophthalmol. 1858;4:1-54. https://doi.org/10.1007/bf02720734.
  5. Jaeger E. Veber Glaucom und seine Heilung durch Iridectomie. Z Ges Aerzte Wein. 1858;14:465-484.
  6. Drance SM, Begg IS. Sector haemorrhage – a probable acute ischaemic disc change in chronic simple glaucoma. Can J Ophthalmol. 1970;5(2):137-141.
  7. Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124(3):287-295. https://doi.org/10.1016/s0002-9394(14)70820-7.
  8. Plange N, Kaup M, Arend O, Remky A. Asymmetric visual field loss and retrobulbar haemodynamics in primary open-angle glaucoma. Graefe’s Arch Clin Exp Ophthalmol. 2006;244(8):978-983. https://doi.org/10.1007/s00417-005-0227-9.
  9. Harrington DO. The pathogenesis of the glaucoma field: clinical evidence that circulatory insufficiency in the optic nerve is the primary cause of visual field loss in glaucoma. Am J Ophthalmol. 1959;47(5 Pt 2):177-185. https://doi.org/10.1016/s0002-9394(14)78241-8.
  10. Sachsenweger R. The influence of hypertension on the prognosis of glaucoma. Klin Monbl Augenheilkd. 1963;142:625-633.
  11. Ebner R. [The prognosis of glaucoma in relation to the arterial blood pressure. (In German)]. Wien Med Wochenschr. 1967;117(46):1024-1026.
  12. Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma: a population-based assessment. Arch Ophthalmol. 1995;113(2):216-221. https://doi.org/10.1001/archopht.1995.01100020100038.
  13. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603-624. https://doi.org/10.1016/s0002-9394(14)70067-4.
  14. Graham SL, Drance SM, Wijsman K, et al. Ambulatory blood pressure monitoring in glaucoma. Ophthalmology. 1995;102(1):61-69. https://doi.org/10.1016/s0161-6420(95)31053-6.
  15. Melgarejo J, Lee JH, Petitto M, et al. Glaucomatous optic neuropathy associated with nocturnal dip in blood pressure findings from the maracaibo aging study. Ophthalmology. 2018;125(6):807-814. https://doi.org/10.1016/j.ophtha.2017.11.029.
  16. Phelps CD, Corbett JJ. Migraine and low-tension glaucoma. A case-control study. Invest Ophthalmol Vis Sci. 1985;26(8): 1105-1108.
  17. Drance SM, Douglas GR, Wijsman K, et al. Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmology. 1988;105(1):35-39. https://doi.org/10.1016/0002-9394(88)90118-3.
  18. Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol. 1998;82(8):862-870. https://doi.org/10.1136/bjo.82.8.862.
  19. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38Suppl:3-6. https://doi.org/10.1016/0039-6257(94) 90041-8.
  20. Flammer J, Orgül S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res. 1998;17(2):267-289. https://doi.org/10.1016/s1350-9462(97)00006-2.
  21. Flammer J, Orgül S, Costa VP. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359-393. https://doi.org/10.1016/s1350-9462(02)00008-3.
  22. Grieshaber MC, Flammer J. Does the blood-brain barrier play a role in glaucoma? Surv Ophthalmol. 2007;52(6):115-121. https://doi.org/10.1016/j.survophthal.2007.08.005.
  23. Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 2013;13(1):43-49. https://doi.org/10.1016/j.coph.2012.10.001.
  24. Курышева Н.И. Глазная гемоперфузия и глаукома. – М.: Гринлайт, 2014. – 123 с. [Kurysheva NI. Glaznaya gemoperfuziya i glaukoma. Moscow: Grinlayt; 2014. 123 р. (In Russ.)]
  25. Jonas JB. Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmologica. 2011;89(6):505-514. https://doi.org/10.1111/j.1755-3768.2010.01915.x.
  26. Ноишевский К.И. Глаукома, её этиология и лечение. – Петроград: Практ. медицина (В.С. Эттингер), 1915 (Ф.В. Эттингер). – 64 с. (Серия: Клинические монографии). [Noishevskii KI. Glaukoma, eye etiologiya i lecheniye. Petrograd: Prakt. meditsina (V.S. Ettinger); 1915 (F.V. Ettinge). 64 р. (Series: Klinicheskiye monografii). (In Russ.)]
  27. Волков В.В., Коровенков Р.И. Об уровне давления жидкости в межоболочечных пространствах зрительного нерва кролика // Физиологический журнал СССР им. И.М. Сеченова. – 1974. – Т. 60. – № 2. – 193–196. [Volkov VV, Korovenkov RI. The level of the fluid pressure in the intermeningeal space of the rabbit’s optic nerve. Fiziologicheskii zhurnal SSSR im. I.M. Sechenova. 1974;60(2):193-196. (In Russ.)]
  28. Morgan WH, Yu DY, Cooper RL, et al. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Investig Ophthalmol Vis Sci. 1995;36(6):1163-1172.
  29. Morgan WH, Yu DY, Alder VA, et al. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Investig Ophthalmol Vis Sci. 1998;39(8):1419-1428.
  30. Ошоров А.В., Лубнин А.Ю. Внутричерепное давление. Мониторинг внутричерепного давления // Анестезиология и реаниматология. – 2010. – № 4. – С. 4–10. [Oshorov AV, Lubnin AYu. Intracranial pressure. Intracranial pressure monitoring. Anesteziol Reanimatol. 2010;(4):4-10. (In Russ.)]
  31. Albeck MJ, Børgesen SE, Gjerris F, et al. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991;74(4):597-600. https://doi.org/10.3171/jns. 1991.74.4.0597.
  32. Magnæs B. Body position and cerebrospinal fluid pressure. J Neurosurg. 1976;44(6):687-697. https://doi.org/10.3171/jns. 1976.44.6.0687.
  33. Fleischman D, Berdahl JP, Zaydlarova J, et al. Cerebrospinal fluid pressure decreases with older age. PLoS ONE. 2012;7(12):1-9. https://doi.org/10.1371/journal.pone.0052664.
  34. Pasquale LR, Willett WC, Rosner BA, et al. Anthropometric measures and their relation to incident primary open-angle glaucoma. Ophthalmology. 2010;117(8):1521-1529. https://doi.org/10.1016/j.ophtha.2009.12.017.
  35. Berdahl JP, Fautsch MP, Stinnett SS. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Investig Ophthalmol Vis Sci. 2008;49(12):5412-5418. https://doi.org/10.1167/iovs.08-2228.
  36. Berdhal JP, Allingham RR. Intracranial pressure and glaucoma. Curr Opin Ophthalmol. 2010;21(2):106-111. https://doi.org/10.1097/ICU.0b013e32833651d8.
  37. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma. Ophthalmology. 2010;117(2):259-266. https://doi.org/10.1016/j.ophtha.2009.06.058.
  38. Ren R, Wang N, Zhang X, et al. Cerebrospinal fluid pressure correlated with body mass index. Graefe’s Arch Clin Exp Ophthalmol. 2011;250(3):445-446. https://doi.org/10.1007/s00417-011-1746-1.
  39. Berdahl JP, Fleischman D, Zaydlarova J, et al. Body mass index has a linear relationship with cerebrospinal fluid pressure. Investig Ophthalmol Vis Sci. 2012;53(3):1422-1427. https://doi.org/10.1167/iovs.11-8220.
  40. Killer HE, Miller NR, Flammer J, et al. Cerebrospinal fluid exchange in the optic nerve in normal-tension glaucoma. Br J Ophthalmol. 2012;96(4):544-548. https://doi.org/10.1136/bjophthalmol-2011-300663.
  41. Pircher A, Montali M, Killer HE, et al. Impaired cerebrospinal fluid dynamics along the entire optic nerve in normal-tension glaucoma. Acta Ophthalmologica. 2018;96(5):562-569. https://doi.org/10.1111/aos.13647https://doi.org/10.1111/aos.13647.
  42. Волков В.В., Сухинина Л.Б., Устинова Е.И. Глаукома, преглаукома, офтальмогипертензия: дифференциальная диагностика. – Л.: Медицина, 1985. – 216 с. [Volkov VV, Sukhinina LB, Ustinova EI. Glaukoma, preglaukoma, oftal’mogipertenziya: differentsial’naya diagnostika. Leningrad: Meditsina; 1985. 216 р. (In Russ.)]
  43. Yablonsky MR, Pokorny KS, Ritch R. Effect of decreased intracranial pressure on optic disc. Investig Ophthalmol Vis Sci. 1979;18(Suppl):165.
  44. Jonas JB. Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmologica. 2010;89(6):505-514. https://doi.org/10.1111/j.1755-3768.2010.01915.x.
  45. Jonas JB, Nangia V, Wang N, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The central India eye and medical study. PLoS ONE. 2013;8(12):1-8. https://doi.org/10.1371/journal.pone.0082284.
  46. Jonas JB, Wang NL, Wang YX, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmologica. 2015;93(1):7-13. https://doi.org/10.1111/aos.12480.
  47. Ren R, Zhang X, Wang N, et al. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmologica. 2011;89(2):142-148. https://doi.org/10.1111/j.1755-3768.2010.02015.x.
  48. Wang YX, Jonas JB, Wang N, et al. Intraocular pressure and estimated cerebrospinal fluid pressure. The Beijing Eye Study 2011. PLoS ONE. 2014;9(8):1-7. https://doi.org/10.1371/journal.pone.0104267.
  49. Chen BH, Drucker MD, Louis KM, et al. Progression of normal-tension glaucoma after ventriculoperitoneal shunt to decrease cerebrospinal fluid pressure. Glaucoma. 2016;25(1):50-52. https://doi.org/10.1097/ijg.0000000000000186.
  50. Jonas JB, Wang N, Wang YX, et al. Body height, estimated cerebrospinal fluid pressure and open-angle glaucoma. The Beijing Eye Study 2011. PLoS ONE. 2014;9(1):1-8. https://doi.org/10.1371/journal.pone.0086678.
  51. Lindén C, Qvarlander S, Jóhannesson G, et al. Normal-tension glaucoma has normal intracranial pressure. Ophthalmology. 2018;125(3):361-368. https://doi.org/10.1016/j.ophtha.2017.09.022.
  52. Lee SH, Kwak SW, Kang EM, et al. Estimated trans-lamina cribrosa pressure differences in low-teen and high-teen intraocular pressure normal tension glaucoma: the Korean National Health and Nutrition Examination Survey. PLoS ONE. 2016;11(2):1-15. https://doi.org/10.1371/journal.pone.0148412.
  53. Jaggi GP, Miller NR, Flammer J, et al. Optic nerve sheath diameter in normal-tension glaucoma patients. Br J Ophthalmol. 2012;96(1):53-56. https://doi.org/10.1136/bjo.2010.199224.
  54. Pircher A, Montali M, Berberat J, et al. Relationship between the optic nerve sheath diameter and lumbar cerebrospinal fluid pressure in patients with normal tension glaucoma. Eye. 2017;31(9):1365-1372. https://doi.org/10.1038/eye.2017.70.
  55. Крылов В.В., Петриков С.С., Солодов А.А. Принципы мониторинга внутричерепного давления // Анналы клинической и экспериментальной неврологии. - 2014. - Т. 8. - № 1. – С. 44–48. [Krylov VV, Petrikov SS, Solodov AA. Printsipy monitoringa vnutricherepnogo davleniya. Annals of clinical and experimental neurology. 2014;8(1):44-48. (In Russ.)]
  56. Горбачев В.И., Лихолетова Н.В., Горбачев С.В. Мониторинг внутричерепного давления: настоящее и перспективы (сообщение 3) // Политравма. – 2014. – № 2. – С. 77–86. [Gorbachev VI, Likholetova NV, Gorbachev SV. Intracranial pressure monitoring: present and prospects (report 3). Politravma. 2014;(2):77-86. (In Russ.)]
  57. Czosnyka M, Matta BF, Smielewski P, et al. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 1998;88(5):802-808. https://doi.org/10.3171/jns.1998.88.5.0802.
  58. Firsching R, Schütze M, Motschmann M, et al. Venous ophthalmodynamometry: a noninvasive method for assessment of intracranial pressure. J Neurosurg. 2000;93(1):33-36. https://doi.org/10.3171/jns.2000.93.1.0033.
  59. Petkus V, Ragauskas A, Jurkonis R, Investigation of intracranial media ultrasonic monitoring model. Ultrasonics. 2002;40(18): 829-833. https://doi.org/10.1016/s0041-624x(02)00216-0.
  60. Watanabe A, Kinouchi H, Horikoshi T, et al. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg. 2008;109(2):255-258. https://doi.org/10.3171/jns/ 2008/109/8/0255.
  61. Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing Intracranial and Intraocular Pressure (ICOP) Study. Ophthalmology. 2012;119(10):2065-2073. https://doi.org/10.1016/j.ophtha.2012.03.054.
  62. Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol. 2018;186:128-137. https://doi.org/10.1016/j.ajo.2017.11.024.
  63. Downs CJ, Roberts MD, Sigal IA, et al. Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Experimental Eye Research. 2011;93(2):133-140. https://doi.org/10.1016/j.exer.2010.08.004.
  64. Sullivan-Mee M, Billingsle SC, Patel AD, et al. Ocular response analyzer in subjects with and without glaucoma. Optom Vis Sci. 2008;85(6):463-470. doi: 10.1097/OPX.0b013e3181784673.
  65. Иомдина Е.Н., Игнатьева Н.Ю., Данилов Н.А., и др. Биохимические и структурно-биомеханические особенности матрикса склеры человека при первичной открытоугольной глаукоме // Вестник офтальмологии. – 2011. – Т. 127. – № 6. – С. 10–14. [Iomdina EN, Ignatieva NY, Danilov NA, et al. Biochemical, structural and biomechanical features of human scleral matrix in primary open-angle glaucoma. Annals of ophthalmology. 2011;127(6):10-14. (In Russ.)]
  66. Иомдина Е.Н., Арутюнян Л.Л., Игнатьева Н.Ю. и др. Сравнительное изучение возрастных особенностей уровня поперечной связанности коллагена склеры пациентов с различными стадиями первичной открытоугольной глаукомы // Российский офтальмологический журнал. – 2016. – Т. 9. – № 1. – С. 19–26. [Iomdina EN, Arutyunyan LL, Ignatieva NY, et al. A comparative study of age-related level of sclera collagen crosslinking in patients with different stages of primary open angle glaucoma. Russian Ophthalmological Journal. 2016;9(1):19-26. (In Russ.)]. https://doi.org/10.21516/2072-0076-2016-9-1-19-26.
  67. Киселева О.А., Иомдина Е.Н., Якубова Л.В., и др. Решётчатая пластинка склеры при глаукоме: биомеханические особенности и возможности их клинического контроля // Российский офтальмологический журнал. – 2018. – Т. 11. – № 3. – С. 76–83. [Kiseleva OA, Iomdina EN, Yakubova LV, et al. Lamina cribrosa in glaucoma: biomechanical properties and possibilities of their clinical control. Russian Ophthalmological Journal. 2018;11(3):76-83. (In Russ.)]. https://doi.org/10.21516/2072-0076-2018-11-3-76-83.
  68. Bellezza AJ, Rintalan CJ, Thompson HW, et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Investig Ophthalmol Vis Sci. 2003;44(2):623-637. https://doi.org/10.1167/iovs.01-1282.
  69. Yang H, Thompson H, Roberts MD, et al. Deformation of the early glaucomatous monkey optic nerve head connective tissue after acute iop elevation in 3-d histomorphometric reconstructions. Investig Ophthalmol Vis Sci. 2011;52(1):345-363. https://doi.org/10.1167/iovs.09-5122.
  70. Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Investig Ophthalmol Vis Sci. 2003;44(12):5189-5195. https://doi.org/10.1167/iovs.03-0174.
  71. Park HY, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary Open-angle glaucoma. Ophthalmology. 2012;119(1):10-20. https://doi.org/10.1016/j.ophtha.2011.07.033.
  72. Park HY, Park, CK. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology. 2013;120(4):745-752. https://doi.org/10.1016/j.ophtha.2012.09.051.
  73. Omodaka K, Horii T, Takahashi S, et al. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS ONE. 2015;10(4):1-16. https://doi.org/10.1371/journal.pone.0122347.
  74. Yokota S, Takihara Y, Takamura Y, et al. Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study. BMC Ophthalmology. 2017;17(1):1-5. https://doi.org/10.1186/s12886-017-0456-9.
  75. Kim M, Bojikian KD, Slabaugh MA, et al. Lamina depth and thickness correlate with glaucoma severity. Indian J Ophthalmol. 2016;64(5):358-363. https://doi.org/10.4103/0301-4738. 185594.
  76. Furlanetto RL, Park SC, Damle UJ, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Investig Ophthalmol Vis Sci. 2013;54(7): 4836-4842. https://doi.org/10.1167/iovs.12-11530.
  77. Li L, Bian A, Cheng G, et al. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma. Acta Ophthalmologica. 2016;94(6):492-500. https://doi.org/10.1111/aos.13012.
  78. Lee SH, Kim TW, Lee EJ, et al. Diagnostic power of lamina cribrosa depth and curvature in glaucoma. Investig Ophthalmol Vis Sci. 2017;58(2):755-762. https://doi.org/10.1167/iovs.16-20802.
  79. Kim YN, Shin JW, Sung KR. Relationship between progressive changes in lamina cribrosa depth and deterioration of visual field loss in glaucomatous eyes. Korean J Ophthalmol. 2018;32(6): 470-477. https://doi.org/10.3341/kjo.2018.0015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Simakova I.L., Suleimanova A.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies