Vitelliform changes in the central retina occurring in adults

Cover Page

Cite item

Full Text

Abstract

Introduction. Vitelliform lesions of the central retinal area in adult patients represent a heterogeneous group of diseases. This article describes different variants of vitelliform changes in adults, based on the published literature data.

Materials and methods. We have analyzed and described different variants of vitelliform changes in adults, based on literature data, examples from own clinical practice using multimodal approach are included.

Discussion. Vitelliform lesions of the central retinal area are can debut at various ages, occurring in mono- or multifocal way, have various stages of degradation of vitelliform material, masquerading as other lesions of the macular area and of the posterior pole. Many of these diseases appear due to mutations in determined genes, though, a fairly large proportion of cases is considered to be sporadic. Nowadays, characteristic signs of different diseases with the vitelliform material are described. But differential diagnosis with other similar diseases (some age-related macular degeneration forms and those of central serous chorioretinopathy) is fairly difficult and requires a multimodal ophthalmologic approach, and in some cases genetic studies.

Conclusions. Vitelliform lesions of the central retinal area, occurring in adult patients are a group of diseases that are difficult to diagnose and masquerade themselves as other diseases of the central retina, which requires certain doctor’s knowledge and ability to carry out a multimodal imaging and prescribe the appropriate treatment if needed.

About the authors

Nataliia V. Matcko

S. Fyodorov Eye Microsurgery Federal State Institution, Saint Petersburg Branch; North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: matsko.natalia@mail.ru
ORCID iD: 0000-0001-8909-9999

Ophthalmologist; PhD Student

Russian Federation, Saint Petersburg

Marina V. Gatsu

S. Fyodorov Eye Microsurgery Federal State Institution, Saint Petersburg Branch; North-Western State Medical University named after I.I. Mechnikov

Email: m-gatsu@yandex.ru

Dr. Med. Sci., Deputy Director of Clinical Services; Professor

Russian Federation, Saint-Petersburg

Nyurguyana N. Grigoryeva

Saint Petersburg State Budgetary Healthcare Institution “City consultative diagnostic center No. 1”, Regional daibetical center; Saint Petersburg State University

Email: grinur@mail.ru

Ophthalmologist; PhD

Russian Federation, Saint-Petersburg

References

  1. Chowers I, Tiosano L, Audo I, et al. Adult-onset foveomacular vitelliform dystrophy: a fresh perspective. Prog Retin Eye Res. 2015;47:64-85. https://doi.org/10.1016/j.preteyeres.2015.02.001.
  2. Dubovy S, Hairston R, Schatz H, et al. Adult-jnset foveomacular pigment epithelial dystrophy: clinicopathologic correlation of three cases. Retina. 2000;20(6):638-649. https://doi.org/10.1097/00006982-200006000-00010.
  3. Arnold J, Sarks J, Killingsworth M, et al. Adult vitelliform macular degeneration: a clinicopathological study. Eye. 2003;17(6):717-726. https://doi.org/10.1038/sj.eye.6700460.
  4. Benhamou N, Souied E, Zolf R, et al. Adult-onset foveomacular vitelliform dystrophy: a study by optical coherence tomography. Am J Ophthalmol. 2003;135(3):362-367. https://doi.org/10.1016/s0002-9394(02)01946-3.
  5. Querques G, Bux A, Prato R, et al. Correlation of visual function impairment and optical coherence tomography findings in patients with adult-onset foveomacular vitelliform macular dystrophy. Am J Ophthalmol. 2008;146(1):135-142. https://doi.org/10.1016/j.ajo.2008.02.017.
  6. Freund K, Laud K, Lima L, et al. Acuired vitelliform lesions. Retina. 2011;31(1):13-25. https://doi.org/10.1097/iae.0b013e3181ea48ba.
  7. Marmor M, Byers B. Pattern dystrophy of the pigment epithelium. Am J Ophthalmol. 1977;84(1):32-44. https://doi.org/10.1016/ 0002-9394(77)90320-8.
  8. Hsieh R, Fine B, Lyons J. Patterned dystrophies of the retinal pigment epithelium. Arch Ophthalmol. 1977;95(3):429-435. https://doi.org/10.1001/archopht.1977.04450030071006.
  9. Gass JD. Stereoscopic atlas of macular diseases: diagnosis and treatment. 4th ed. Mosby-Year Book Inc., St Louis; 1997.
  10. Francis P. Genetic and phenotypic heterogeneity in pattern dystrophy. Br J Ophthalmol. 2005;89(9):1115-1119. https://doi.org/10.1136/bjo.2004.062695.
  11. Boon C, van Schooneveld M, den Hollander A, et al. Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol. 2007;91(11):1504-1511. https://doi.org/10.1136/bjo.2007.115659.
  12. Yang Z, Lin W, Moshfeghi D, et al. A novel mutation in the RDS/Peripherin gene causes adult-onset foveomacular dystrophy. Am J Ophthalmol. 2003;135(2):213-218. https://doi.org/10.1016/s0002-9394(02)01815-9.
  13. Gass J. A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc. 1974;72:139-156.
  14. Renner A, Tillack H, Kraus H, et al. Morphology and functional characteristics in adult vitelliform macular dystrophy. Retina. 2004;24(6): 929-39. https://doi.org/10.1097/00006982-200412000-00014.
  15. Furino C, Boscia F, Cardascia N, et al. Fundus autofluorescence, optical coherence tomography and visual acuity in adult-onset foveomacular dystrophy. Ophthalmologica. 2008;222(4):240-244. https://doi.org/10.1159/000130427.
  16. Parodi M, Iacono P, Pidio M, et al. Autofluorescence in adult-onset foveomacular vitelliform dystrophy. Retina. 2008;28(6):801-807. https://doi.org/10.1097/iae.0b013e31816f859d.
  17. Coscas F, Puche N, Coscas G, et al. Comparison of macular choroidal thickness in adult onset foveomacular vitelliform dystrophy and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014;55(1):64-69. https://doi.org/10.1167/iovs.13-12931.
  18. Burgess D, Olk R, Uniat L. Macular disease resembling adult foveomacular vitelliform dystrophy in older adults. Ophthalmology. 1987;94(4):362-6. https://doi.org/10.1016/s0161-6420(87) 33438-4.
  19. Bandah-Rozenfeld D, Collin R, Banin E, et al. Mutations in IMPG2, encoding interphotoreceptor matrix proteoglycan 2, cause autosomal-recessive retinitis pigmentosa. Am J Hum Gen. 2010;87(2):199-208. https://doi.org/10.1016/j.ajhg.2010.07.004.
  20. Boon C, den Hollander A, Hoyng C, et al. The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res. 2008;27(2):213-235. https://doi.org/10.1016/j.preteyeres.2008.01.002.
  21. Wells J, Wroblewski J, Keen J, et al. Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy. Nat Genet. 1993;3(3):213-218. https://doi.org/10.1038/ng0393-213.
  22. Petrukhin K, Koisti M, Bakall B, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet. 1998;19(3):241-247. https://doi.org/10.1038/915.
  23. Krämer F, White K, Pauleikhoff D, et al. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Gen. 2000;8(4):286-292. https://doi.org/10.1038/sj.ejhg.5200447.
  24. Renner A, Tillack H, Kraus H, et al. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology. 2005;112(4):586-592.e2. https://doi.org/10.1016/j.ophtha.2004.10.041.
  25. Querques G, Zerbib J, Santacroce R, et al. Functional and clinical data of Best vitelliform macular dystrophy patients with mutations in the BEST1 gen. Mol Vis. 2009;15:2960-2972.
  26. Meunier I, Manes G, Bocquet B, et al. Frequency and clinical pattern of vitelliform macular dystrophy caused by mutations of interphotoreceptor matrix IMPG1 and IMPG2 genes. Ophthalmology. 2014;121(12): 2406-2414. https://doi.org/10.1016/j.ophtha.2014.06.028.
  27. Spaide R. Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina. 2008;28(1):5-35. https://doi.org/10.1097/IAE.0b013e318158eca4.
  28. Boon CJ, Kleverin BJ, Leroy BP, et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res. 2009;28(3):187-205. https://doi.org/10.1016/j.preteyeres.2009.04.002.
  29. Querques G, Forte R, Querques L, et al. Natural course of adult-onset foveomacular vitelliform dystrophy: a spectral-domain optical coherence tomography analysis. Am J Ophthalmol. 2011;152:304-313. https://doi.org/10.1016/j.ajo.2011.01.047.
  30. Barbazetto IA, Yannuzzi NA, Klais CM, et al. Pseudo-vitelliform macular detachment and cuticular drusen: exclusion of 6 candidate genes. Ophthalmic Genet. 2007;28(4):192-197. https://doi.org/10.1080/13816810701538596.
  31. Jaouni T, Averbukh E, Burstyn-Cohen T, et al. Association of pattern dystrophy with an HTRA1 singlenucleotide polymorphism. Arch Ophthalmol. 2012;130(8):987-991. https://doi.org/10.1001/archophthalmol.2012.1483.
  32. Deutman AF, van Blommestein JD, Henkes HE, et al. Butterfly-shaped pigment dystrophy of the fovea. Arch Ophthalmol. 1970;83(5):558-569. https://doi.org/ 10.1001/archopht.1970. 00990030558006.
  33. Weleber RG, Carr RE, Murphey WH, et al. Phenotypic variation including retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in a single family with a deletion of codon 153 or 154 of the peripherin/RDS gene. Arch Ophthalmol. 1993;111(11):1531-1542. https://doi.org/10.1001/archopht.1993.01090110097033.
  34. Apfelstedt-Sylla E, Theischen M, Ruther K, et al. Extensive intrafamilial and interfamilial phenotypic variation among patients with autosomal dominant retinal dystrophy and mutations in the human RDS/peripherin gene. Br J Ophthalmol. 1995;79(1):28-34. https://doi.org/10.1136/bjo.79.1.28.
  35. Gorin MB, Jackson KE, Ferrell RE, et al. A peripherin/retinal degeneration slow mutation (Pro-210-Arg) associated with macular and peripheral retinal degeneration. Ophthalmology.1995;102(2):246-255. https://doi.org/10.1016/s0161-6420(95)31029-9.
  36. Yang Z, Li Y, Jiang L, et al. A novel RDS/peripherin gene mutation associated with diverse macular phenotypes. Ophthalmic Genet. 2004;25(2):133-145. https://doi.org/10.1080/13816810490514388.
  37. Hannan SR, de Salvo G, Stinghe A, et al. Common spectral domain OCT and electrophysiological findings in different pattern dystrophies. Br J Ophthalmol. 2013;97(5):605-610. https://doi.org/10.1136/bjophthalmol-2011-301257.
  38. Slezak H, Hommer K. [Fundus pulverulentus. (In German)]. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1969;178(2):176-182. https://doi.org/10.1007/bf00414383.
  39. Roy R, Saurabh K, Shah D. Multimodal imaging in a case of fundus pulverulentus. Retina. 2018;38(7): e55-e58. https://doi.org/10.1097/iae.0000000000002213.
  40. Clemett R. Vitelliform dystrophy: long-term observations on New Zealand pedigrees. Aust N Z J Ophthalmol. 1991;19(3):221-227. https://doi.org/10.1111/j.1442-9071.1991.tb00665.x.
  41. Deutman AF. The hereditary dystrophies of the posterior pole of the eye. Br J Ophthalmol. 1971;55:788. https://doi.org/10.1136/bjo.55.11.788.
  42. Burgess R, Millar ID, Leroy BP, et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet. 2008;82(1):19-31. https://doi.org/ 10.1016/j.ajhg.2007.08.004.
  43. Borman AD, Davidson AE, O’Sullivan J, et al. Childhoodonset autosomal recessive bestrophinopathy. Arch Ophthalmol. 2011;129(8): 1088-1093. https://doi.org/10.1001/archophthalmol.2011.197.
  44. Gerth C, Zawadzki RJ, Werner JS, Héon E. Detailed analysis of retinal function and morphology in a patient with autosomal recessive bestrophinopathy (ARB). Doc Ophthalmol. 2009;118(3):239-246. https://doi.org/10.1007/s10633-008-9154-5.
  45. Boon CJ, van den Born LI, Visser L, et al. Autosomal recessive bestrophinopathy: differential diagnosis and treatment options. Ophthalmology. 2013;120(4):809-820. https://doi.org/10.1016/j.ophtha.2012.09.057.
  46. Gass J, Chuang E, Granek H. Acute exudative polymorphous vitelliform maculopathy. Trans Am Ophthalmol Soc. 1988;86:354-366.
  47. Barbazetto I, Dansingani K, Dolz-Marco R, et al. Idiopathic acute exudative polymorphous vitelliform maculopathy. Ophthalmology. 2018;125(1):75-88. https://doi.org/10.1016/j.ophtha.2017.07.020.
  48. Koreen L, He SX, Johnson MW, et al. Anti-retinal pigment epithelium antibodies in acute exudative polymorphous vitelliform maculopathy. Arch Ophthalmol. 2011;129(1):23-29. https://doi.org/10.1001/archophthalmol.2010.316.
  49. Саакян С.В., Мякошина Е.Б. Меланома-ассоциированная вителлиформная ретинопатия (клиническое наблюдение) // Вестник офтальмологии. – 2018. – Т. 134. – № 4. – С. 61-67. [Saakyan SV, Myakoshina EB. Melanoma-associated vitelliform retinopathy (a clinical case study). Annals of ophthalmology. 2018;134(4): 61-67. (In Russ.)]. https://doi.org/10.17116/oftalma201813404161.
  50. Eksandh L, Adamus G, Mosgrove L, Andréasson S. Autoantibodies against bestrophin in a patient with vitelliform paraneoplastic retinopathy and a metastatic choroidal malignant melanoma. Arch Ophthalmol. 2008;126(3):432-435. https://doi.org/10.1001/archopht.126.3.432.
  51. Aronow M, Adamus G, Abu-Asab M, et al. Paraneoplastic vitelliform retinopathy: clinicopathologic correlation and review of the literature. Surv Ophthalmol. 2012;57(6):558-564. https://doi.org/10.1016/j.survophthal.2012.02.004.
  52. Urner-Bloch U, Urner M, Stieger P, et al. Transient MEK inhibitor-associated retinopathy in metastatic melanoma. Annals of Oncology. 2014;25(7):1437-1441. https://doi.org/10.1093/annonc/mdu169.
  53. Genead M, Fishman G, Anastasakis A, et al. Macular vitelliform lesion in desferrioxamine-related retinopathy. Doc Ophthalmol. 2010;121(2):161-166. https://doi.org/10.1007/s10633-010-9236-z.
  54. Ergun E, Tittl M, Stur M. Photodynamic therapy with verteporfin in subfoveal choroidal neovascularization secondary to central serous chorioretinopathy. Arch Ophthalmol. 2004;122(1):37-41. https://doi.org/10.1001/archopht.122.1.37.
  55. Mimoun G, Caillaux V, Querques G, et al. Ranibizumab for choroidal neovascularization associated with adult-onset foveomacular vitelliform dystrophy. Retina. 2013;33(3):513-521. https://doi.org/10.1097/iae.0b013e3182753adb.
  56. Tiosano L, Jaouni T, Averbukh E, et al. Bevacizumab treatment for choroidal neovascularization associated with adult-onset foveomacular vitelliform dystrophy. Eur J Ophthalmol. 2014;24(6):890-896. https://doi.org/10.5301/ejo.5000486.
  57. Conley S, Naash M. Gene therapy for PRPH2-associated ocular disease: challenges and prospects. Cold Spring Harb Perspect Med. 2014;4(11): a017376-a017376. https://doi.org/10.1101/cshperspect.a017376.
  58. Tang P, Kono M, Koutalos Y, et al. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res. 2013;32:48-63. https://doi.org/10.1016/j.preteyeres.2012.09.002.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variants of vitelliform changes occurring in adult patients

Download (59KB)
3. Fig. 2. Adult-onset foveomacular vitelliform dystrophy, typical case: a – fundus photo, b – fundus autofluorescence (AF); c – spectral optical coherence tomography (OCT); d – spectral OCT HD Angio Retina choriocapillaris; e, f – fluorescein angiography (FA); g – indocyanine green angiography (ICG)

Download (165KB)
4. Fig. 3. Butterfly-shaped pigment dystrophy, typical case: a – fundus photo; b – AF; c – FA; d – spectral OCT

Download (123KB)
5. Fig. 4. Best macular dystrophy, а typical case, fundus photo and autofluorescence: a – fundus photo, 2014; b – FA, 2014; c – fundus photo, 2016; d – FA, 2016

Download (192KB)
6. Fig. 5. Best macular dystrophy, а typical case: a – spectral OCT; b, c – FA (early, late); d – ICG

Download (220KB)
7. Fig. 6. Best macular dystrophy, outcome with CNV: a – fundus photo at the first visit; b – FA at the first visit; c – fundus photo one year after the first visit; d – FA one year after the first visit; e – OCT at the first visit; f – OCT one year after the first visit

Download (184KB)
8. Fig. 7. Best macular dystrophy, outcome with CNV: a – fundus photo at the first visit; b – FA at the first visit; c – OCT at the first visit; d – fundus photo one year after the first visit; e – FA one year after the first visit; f – OCT one year after the first visit

Download (195KB)
9. Fig. 8. Best macular dystrophy, outcome with CNV: a – fundus photo at the first visit; b – FA at the first visit; c – OCT at the first visit; d – fundus photo one year after the first visit; e – FA one year after the first visit; f – OCT one year after the first visit

Download (191KB)
10. Fig. 9. Acute exudative polymorphic vitelliform maculopathy, fundus photo: a, b – at the time of the first visit; c, d – after 6 months; e, f – after 21 months; g, h – after 6 years from the onset of the disease

Download (197KB)

Copyright (c) 2020 Matcko N.V., Gatsu M.V., Grigoryeva N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».