Optical coherence tomogrpaphy in differential diagnosis of retinal arteriolar macroaneurysms

Cover Page

Cite item

Abstract

Aim. To study the prevalence and topographical distribution of retinal exudation in eyes with retinal arteriolar macroaneurysms (RAM) and in those with macular branch retinal vein occlusions (mBRVO).

Methods. The prevalence of optical coherence tomography (OCT) signs (different types of retinal hemorrhages and accumulation of fluid as well as hard and soft exudates) was evaluated in 28 eyes with RAM (22 males, 6 females, mean age 66.0 ± 9.9 years) versus 17 eyes with mBRVO (9 males, 7 females, mean age 56.9 ± 10.5 years). Topographical distribution of retinal exudation on OCT retinal maps was evaluated in 7 RAM eyes (6 males, 1 female, mean age 66.0 ± 11.7 years) and 8 mBRVO eyes (5 males, 3 females, mean age 60.1 ± 19.2 years). The measures were 1) position of the point of the maximum retinal thickness in relation to the macular center and RAM, 2) difference between maximum retinal thickness in the macular center and that at the site of RAM localization (surrogate control point in mBRVO eyes).

Results. Soft exudates and intraretinal fluid accumulation were mostly associated with mBRVO (p = 0.007 and p < 0.001, respectively), while hard exudates were found almost exclusively in RAM eyes (p < 0.001). Central retinal thickness in RAM eyes was lower than that of mBRVO eyes, 453.1 ± 148.6 μm and 797.5 ± 179.6 μm, respectively (p = 0.001). The point of maximum retinal thickness was found at the site of RAM localization in 8 out of 9 RAM cases (88.9%), and within the central subfield in 8 out of 8 mBRVO cases (100%). The difference between maximum retinal thickness in the macular center and at the site of RAM localization (surrogate control point in mBRVO eyes) was –77.9 ± 174.1 μm and 148.3 ± 100.4 μm for RAM and mBRVO eyes, respectively (p < 0.001).

Conclusions. Evaluation of exudative signs and their topographic distribution based on OCT data may be used for differential diagnosis and laser treatment planning in RAM.

About the authors

Alexey N. Kulikov

Military medical academy of S.M. Kirov

Email: alexey.kulikov@mail.ru

MD, PhD, DMedSc, Professor, Head of the Department

Russian Federation, Saint-Petersburg

Dmitrii S. Maltsev

Military medical academy of S.M. Kirov

Author for correspondence.
Email: glaz.med@yandex.ru
ORCID iD: 0000-0001-6598-3982

MD, PhD, ophthalmologist of the Ophthalmology Department

Saint-Petersburg

Maria A. Burnasheva

Military medical academy of S.M. Kirov

Email: maria.andreevna1@gmail.com

Ophthalmologist

Russian Federation, Saint-Petersburg

Alina A. Kazak

Military medical academy of S.M. Kirov

Email: ali-kazak@mail.ru

Student

Russian Federation, Saint-Petersburg

References

  1. Brown DM, Sobol WM, Folk JC, Weingeist TA. Retinal arteriolar macroaneurysms: long-term visual outcome. Br J Ophthalmol. 1994;78(7):534-538. https://doi.org/10.1136/bjo.78.7.534.
  2. Terubayashi Y, Kida T, Fukumoto M, et al. Long-term follow-up case of multiple retinal arterial macroaneurysms developing branch retinal vein occlusion following ruptured macroaneurysm. Case Rep Ophthalmol. 2016;7(1):243-248. https://doi.org/10.1159/000445824.
  3. Strueven V, Schalenbourg A, Wolfensberger TJ. Multiple arterial macroaneurysms in acquired Coats’ disease in an adult – a case report. Klin Monbl Augenheilkd. 2015;232(4):583-584. https://doi.org/10.1055/s-0035-1545786.
  4. Moosavi RA, Fong KC, Chopdar A. Retinal artery macroaneurysms: clinical and fluorescein angiographic features in 34 patients. Eye (Lond). 2006;20(9):1011-1020. https://doi.org/10.1038/sj.eye.6702068.
  5. Papageorgiou E, Vasiliki D, Koufakis D. Multiple retinal arterial macroaneurysms associated with submacular hemorrhage. Eur J Ophthalmol. 2012;22(5):846-849. https://doi.org/10.5301/ejo.5000126.
  6. Yannuzzi LA, Rohrer KT, Tindel LJ, et al. Fluorescein Angiography Complication Survey. Ophthalmology. 1986;93(5):611-617. https://doi.org/10.1016/s0161-6420(86)33697-2.
  7. Butner RW, McPherson AR. Adverse reactions in intravenous fluorescein angiography. Ann Ophthalmol. 1983;15(11):1084-1086.
  8. Kwiterovich KA, Maguire MG, Murphy RP, et al. Frequency of adverse systemic reactions after fluorescein angiography. Ophthalmology. 1991;98(7):1139-1142. https://doi.org/10.1016/s0161-6420(91)32165-1.
  9. Hayreh SS, Zimmerman MB, Podhajsky P. Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol. 1994;117(4):429-441. https://doi.org/10.1016/s0002-9394(14)70001-7.
  10. Bourhis A, Girmens JF, Boni S, et al. Imaging of macroaneurysms occurring during retinal vein occlusion and diabetic retinopathy by indocyanine green angiography and high resolution optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2010;248(2): 161-166. https://doi.org/10.1007/s00417-009-1175-6.
  11. Laud K, El-Haig W, Yannuzzi LA. Optic nerve macroaneurysms as the initial presentation of idiopathic retinal vasculitis, aneurysms, and neuroretinitis. Retin Cases Brief Rep. 2008;2(1):41-43. https://doi.org/10.1097/01.icb.0000258960.61050.42.
  12. Magee MA, Kroll AJ, Lou PL, Ryan EA. Retinal capillary hemangiomas and von Hippel-Lindau disease. Semin Ophthalmol. 2009;21(3): 143-150. https://doi.org/10.1080/08820530500350712.
  13. Maddock IR, Moran A, Maher ER, et al. A genetic register for von Hippel-Lindau disease. J Med Genet. 1996;33(2):120-127. https://doi.org/10.1136/jmg.33.2.120.
  14. Maltsev DS, Kulikov AN, Uplanchiwar B, et al. Direct navigated laser photocoagulation as primary treatment for retinal arterial macroaneurysms. Int J Retina Vitreous. 2018;4(1). https://doi.org/10.1186/s40942-018-0133-z.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Representative example of evaluation of topographical distribution of retinal exudation in patients with retinal arteriolar macroaneurysm (RAM) (a, c, e) and macular branch retinal vein occlusion (mBRVO) (b, d, f). The white and blue lines represent positions of OCT cross-sectional scans crossing the macular center (c, d) and the RAM (e) or the surrogate control point in mBRVO eye (f)

Download (1MB)
3. Fig. 2. Box-and-whiskers plot showing central retinal thickness in eyes with retinal arteriolar macroaneurysms and macular branch retinal vein occlusions: RAM – retinal arteriolar macroaneurysm; BRVO – branch retinal vein occlusion

Download (42KB)
4. Fig. 3. Box-and-whiskers plot showing difference of maximum retinal thickness in the macular center and control point in eyes with retinal arteriolar macroaneurysms and macular branch retinal vein occlusions : RAM – retinal arteriolar macroaneurysm; BRVO – branch retinal vein occlusion

Download (45KB)
5. Fig. 4. Topographical distribution of retinal exudative findings in the left eye of the patient with a retinal arteriolar macroaneurysm (RAM). Retinal thickness map demonstrates an increase in retinal thickness from the macular center toward the microaneurysm. Maximum retinal thickness within central subfield (black asterisk) is of 450 µm and maximum retinal thickness at the RAM site (white asterisk) is of 525 µm. Color fundus photograph demonstrates centrifugal (from RAM (black arrowhead)) distribution of hard exudates (white arrowheads)

Download (654KB)

Copyright (c) 2019 Kulikov A.N., Maltsev D.S., Burnasheva M.A., Kazak A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies