Artificial intelligence and machine learning for optical coherence tomography-based diagnosis in central serous chorioretinopathy

Cover Page

Cite item

Abstract

The aim of the present study was to examine the potential of machine learning for identification of isolated neurosensory retina detachment and retinal pigment epithelium (RPE) alterations as diagnostic criteria of central serous chorioretinopathy (CSC).

Material and methods. Patients with acute CSC in whom a standard ophthalmic examination and optical coherence tomography (OCT) using RTVue-XR Avanti (Angio Retina HD scan protocol, 6 × 6 mm) was performed were included in the study. 10-μm en face slab above the RPE layer was used to create ground truth masks. Learning aims were defined as identification of 3 classes of structural abnormalities on OCT cross-sectional scans: class 1 – subretinal fluid, class 2 – RPE abnormalities, and class 3 – leakage points. Data for each of the 3 classes included: 4800/1400 training/test images for class 1, 2000/802 training/test images for class 2, and 1504/408 training/test images for class 3. Unet-similar architecture was used for segmentation of abnormalities on OCT cross-sectional scans.

Results. Analysis of test sets revealed sensitivity, specificity, precision, and F1-score for detection of subretinal fluid of 0.61, 0.99, 0.99, and 0.76, respectively. For detection of RPE abnormalities sensitivity, specificity, precision, and F1-score were 0.14, 0.95, 0.94 and 0.24, respectively. For detection of leakage point sensitivity, specificity, precision, and F1-score were 0.06, 1.0, 1.0, and 0.12, respectively.

Conclusions. Thus, machine learning demonstrated high potential in the OCT-based identification of structural abnormalities associated with acute CSC (neurosensory retina detachment and RPE alterations). Topical identification of the leakage point appears to be possible using large learning sets.

About the authors

Alexey N. Kulikov

S.M. Kirov Military Medical Academy

Email: alexey.kulikov@mail.ru
SPIN-code: 6440-7706

MD, PhD, DMedSc, Professor, Head of the Department

Russian Federation, Saint Petersburg

Ekaterina Yu. Malahova

Pavlov Institute of Physiology Russian Academy of Sciences

Email: katerina.malahova@gmail.com

Associate Researcher

Russian Federation, Saint Petersburg

Dmitrii S. Maltsev

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: glaz.med@yandex.ru
ORCID iD: 0000-0001-6598-3982

MD, PhD, ophthalmologist of the Ophthalmology Department

Russian Federation, Saint Petersburg

References

  1. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962-969. https://doi.org/10.1016/j.ophtha.2017.02.008.
  2. Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82-118. https://doi.org/10.1016/j.preteyeres.2015.05.003.
  3. Maltsev DS, Kulikov AN, Chhablani J. Topography-guided identification of leakage point in central serous chorioretinopathy: a base for fluorescein angiography-free focal laser photocoagulation. Br J Ophthalmol. 2018;102(9):1218-1225. https://doi.org/10.1136/bjophthalmol-2017-311338.
  4. Бойко Э.В., Мальцев Д.С. Фокальная навигационная лазерная коагуляция сетчатки с помощью ОКТ-картирования // Вестник офтальмологии. – 2016. – Т. 132. – № 3. – С. 56–60. [Boyko EV, Mal’tsev DS. En face’ optical coherence tomography guided focal navigated laser photocoagulation. Annals of ophthalmology. 2016;132(3):56-60. (In Russ.)]. https://doi.org/10.17116/oftalma2016132356- 60.
  5. Maltsev DS, Kulikov AN, Chhablani J. Clinical application of fluorescein angiography-free navigated focal laser photocoagulation in central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina. [In Press]
  6. Xiang D, Tian H, Yang X, et al. Automatic segmentation of retinal layer in OCT images with choroidal neovascularization. IEEE Trans Image Process. 2018;27(12):5880-5891. https://doi.org/10.1109/TIP.2018.2860255.
  7. Khalid S, Akram MU, Hassan T, et al. Fully automated robust system to detect retinal edema, central serous chorioretinopathy, and age related macular degeneration from optical coherence tomography images. Biomed Res Int. 2017;2017:7148245. https://doi.org/10.1155/2017/7148245.
  8. Wu M, Fan W, Chen Q, et al. Three-dimensional continuous max flow optimization-based serous retinal detachment segmentation in SD-OCT for central serous chorioretinopathy. Biomed Opt Express. 2017;8(9):4257-4274. https://doi.org/10.1364/BOE.8.004257.
  9. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015. MICCAI 2015. Lecture notes in computer science. Vol. 9351. Ed. by N. Navab, J. Hornegger, W. Wells, A. Frangi. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-24574-4_28.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Example of detection of subretinal fluid within an individual B-scan by the taught-in neural network: а – a raw cross-sectional OCT scan; b – resultant image of detection of subretinal fluid accumulation area; c – distribution of a probabilistic characteristic of subretinal fluid presence

Download (381KB)
3. Fig. 2. Representative example of subretinal fluid detection within a stack of B-scans by the taught-in neural network: а – en face image demonstrating the subretinal fluid distribution; b – resultant image after detection and mapping of subretinal fluid from a stack of B-scans; c – distribution of a probabilistic characteristic of subretinal fluid presence on an individual B-scan. The dashed line represents a position of cross-sectional scan

Download (386KB)

Copyright (c) 2019 Kulikov A.N., Malahova E.Y., Maltsev D.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».