Femtoassisted posterior lamellar keratoplasty in bullous keratopathy of stage IV–V (clinical application experience)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Bullous keratopathy is a chronic edema of the cornea, accompanied by a significant visual acuity loss and pain. The cause of bullous keratopathy is a pathological irreversible decrease in the number of endothelial cells, in which the endothelial layer cannot perform its main barrier and pumping functions.

AIM: To evaluate the reproducibility and functional results of femto-assisted posterior lamellar keratoplasty using intraoperative OCT at the stage IV–V of bullous keratopathy.

MATERIALS AND METHODS: The study was conducted on 23 eyes of 23 patients diagnosed with stage IV–V of bullous keratopathy. The mean age of patients was 69 ± 12 years, there were 14 male patients and 9 female patients. Before surgery, light perception with correct light projection was recorded in 15 cases, in 5 cases — the count of fingers at the face (0.005), in 3 cases visual acuity was 0.01. The central corneal thickness varied from 981 μm to 1960 μm and averaged 1008 ± 96 μm. Femto LDV Z8 femtosecond laser (Ziemer, Switzerland) was used to form an endothelial graft. All surgeries were performed using the Hi-R Neo 900 operating microscope with an integrated third-generation OCT module (Haag-Streit Surgical, Germany).

RESULTS: No intraoperative complications were noted. The presence of objective control in the form of intraoperative OCT made it possible in all cases to clearly differentiate stromal and endothelial surfaces of the posterior layered graft located in the anterior chamber of the eye. The postoperative course was standard for posterior lamellar keratoplasty, accompanied by resorption of corneal edema with restoration of its transparency. The normalization of corneal thickness was noted by 1 month after surgery, and the restoration of corneal optical properties was noted by 3–6 months and was accompanied by gradual increase in visual acuity. Corrected visual acuity by 1 month was 0.05 ± 0.03, by 3, 6, 12 months — 0.1 ± 0.05, 0.15 ± 0.05 and 0.15 ± 0.04, respectively. By 12 months after surgery, the central corneal thickness was 596 ± 42 μm, the thickness of the ultrathin graft tended to decrease somewhat to 67 ± 8 μm, the loss of endothelial cells was 59.3%. Endothelial graft survival was achieved in 82.6% of cases.

CONCLUSIONS: The use of intraoperative OCT allows expanding the indications for posterior lamellar keratoplasty in bullous keratopathy, including the stage IV–V of the disease.

About the authors

Alexander V. Tereshchenko

S.N. Fyodorov Eye Microsurgery Federal State Institution, Kaluga Branch

Email: nauka@mntk.kaluga.ru
ORCID iD: 0000-0002-0840-2675

Dr. Sci. (Med.) Branch Director

Russian Federation, Kaluga

Sergey K. Demyanchenko

S.N. Fyodorov Eye Microsurgery Federal State Institution, Kaluga Branch

Author for correspondence.
Email: nauka@mntk.kaluga.ru
ORCID iD: 0000-0002-0839-2876

Cand. Sci. (Med.), Head of the Department of Optical-reconstructive and Refractive Surgery of the cornea

Russian Federation, Kaluga

Yana M. Trifanenkova

S.N. Fyodorov Eye Microsurgery Federal State Institution, Kaluga Branch

Email: nauka@mntk.kaluga.ru

Ophthalmologist

Russian Federation, Kaluga

Yulia Yu. Golubeva

S.N. Fyodorov Eye Microsurgery Federal State Institution, Kaluga Branch

Email: nauka@mntk.kaluga.ru

Ophthalmologist

Russian Federation, Kaluga

Ekaterina N. Vishnyakova

S.N. Fyodorov Eye Microsurgery Federal State Institution, Kaluga Branch

Email: nauka@mntk.kaluga.ru

Ophthalmologist

Russian Federation, Kaluga

References

  1. Trufanov SV. Selektivnaya keratoplastika v lechenii bulleznoi keratopatii [dissertation abstract]. Moscow, 2015. (In Russ.)
  2. Dronov MM. Glubokaya distrofiya rogovoi obolochki i metody ee lecheniya [dissertation abstract]. Leningrad, 1978. (In Russ.)
  3. Gorgiladze TU, Ivanovskaya EV, Gorgiladze LT. Prichiny, mekhanizm razvitiya i kliniko-anatomicheskaya klassifikatsiya bulleznoi keratopatii. Oftal’mologicheskii zhurnal. 1992;3:129–133. (In Russ.)
  4. Gonçalves ED, Campos M, Paris F, et al. Bullous keratopathy: etiopathogenesis and treatment. Arq Bras Oftalmol. 2008;71(6): 61–64. doi: 10.1590/s0004-27492008000700012
  5. Pricopie S, Istrate S, Voinea L, et al. Pseudophakic bullous keratopathy. Rom J Ophthalmol. 2017;61(2):90–94. doi: 10.22336/rjo.2017.17
  6. Melles GRJ, Ong ST, Ververs B, van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25(8):987–990. doi: 10.1097/01.ico.0000248385.16896.34
  7. Busin M, Bhatt PR, Scorcia VA. A modified technique for descemet membrane stripping automated endothelial keratoplasty to minimize endothelial cell loss. Arch Ophthalmol. 2008;126(8): 1133–1137. doi: 10.1001/archopht.126.8.1133
  8. Malyugin BE, Moroz ZI, Borzenok SA, et al. First experience and clinical results of DSAEK utilizing the pre-cut ultrathin grafts. Fyodorov journal of ophthalmic surgery. 2013;(3):12–16. (In Russ.)
  9. Terry MA, Ousley PJ. Endothelial replacement without surface corneal incisions or sutures: topography of the deep lamellar endothelial keratoplasty procedure. Cornea. 2001;20(1):14–18. doi: 10.1097/00003226-200101000-00002
  10. Melles GR, Wijdh RHJ, Nieuwendaal CP. A technique to excise the descemets’ membrane from a recipient cornea (descemetorhexis). Cornea. 2004;23(3):286–288. doi: 10.1097/00003226-200404000-00011
  11. Price FW, Price MO. Descemet’s stripping with endothelial keratoplasty in 50 eyes: A refractive neutral corneal transplant. J Refract Surg. 2005;21(4):339–345. doi: 10.3928/1081-597X-20050701-07
  12. Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–889. doi: 10.1097/01.ico.0000214224.90743.01
  13. Oganesyan OG, Neroev VV, Gundorova RA, et al. Microinvasive descemetoplasty: analysis of short-term results of first 20 cases. Ophthalmology in Russia. 2010;7(2):20–25. (In Russ.)
  14. Trufanov SV. The results descemet-stripping automated endothelial keratoplasty at bullous keratopathy. Ophthalmology in Russia. 2012;9(1):32–36. (In Russ.) doi: 10.18008/1816–5095-2012-1-61-71
  15. Al-Yousuf N, Mavrikakis I, Mavrikakis E, Daya SM. Penetrating keratoplasty: indications over a 10-year period. Br J Ophthalmol. 2004;88(8):998–1001. doi: 10.1136/bjo.2003.031948
  16. Siganos C, Tsiklis N, Miltsakakis D, et al. Changing Indications for Penetrating Keratoplasty in Greece, 1982–2006: A Multicenter Study. Cornea. 2010;29(4):372–374. doi: 10.1097/ico.0b013e3181bd44a1
  17. Liu M, Hong J. Risk Factors for Endothelial Decompensation after Penetrating Keratoplasty and Its Novel Therapeutic Strategies. J Ophthalmol. 2018;2018:1389486. doi: 10.1155/2018/1389486
  18. Dahiya M. Clinical indications of penetrating keratoplasty in a tertiary care centre of North India. Int J Commun Med Public Health. 2020;7(9):3439–3442.
  19. Price MO, Price FW Jr. Endothelial keratoplasty a review. Clin Experiment Ophthalmol. 2010;38(2):128–140. doi: 10.1111/j.1442-9071.2010.02213.x
  20. Antonova OP. Sovremennye aspekty diagnostiki i lecheniya pervichnoi ehndotelial’noi distrofii rogovitsy (Fuksa) [dissertation abstract]. Moscow, 2016. (In Russ.)
  21. Stuart A, Mannis MJ, Slomovic AR, Suh LH. Performing DSAEK: a step-by-step guide. EyeNet Magazine. 2014;1:25–27.
  22. Matsuzawa A, Takahiko H, Oyakawa I, et al. Use of four asymmetric marks to orient the donor graft during Descemet’s membrane endothelial keratoplasty. BMJ Open Ophthalmol. 2017;1(1):e000080. doi: 10.1136/bmjophth-2017-000080
  23. Wasielica-Poslednik J, Schuster AK, Rauch L, et al. How to avoid an upside-down orientation of the graft during descemet membrane endothelial Keratoplasty? J Ophthalmol. 2019;2019:7813482. doi: 10.1155/2019/7813482
  24. Ehlers JP. Intraoperative optical coherence tomography: past, present, and future. Eye (Lond). 2016;30(2):193–201. doi: 10.1038/eye.2015.255
  25. Siebelmann S, Bachmann B, Lappas A, et al. Intraoperative optical coherence tomography in corneal and glaucoma surgical procedures. Ophthalmologe. 2016;113(8):646–650. doi: 10.1007/s00347-016-0320-y
  26. leica-microsystems.com. Moraru O. Better Decision Making during Anterior Segment Surgery. Leica microsystems [accessed 04.02.2021]. Available from: https://www.leica-microsystems.com/better-decision-making-during-anterior-segment-surgery/
  27. Zola M, Kim J, Petrelli M, et al. Resolution of corneal fibrosis after descemet’s stripping automated endothelial keratoplasty: A case report. Ophthalmol Ther. 2020;9(2):349–354. doi: 10.1007/s40123-020-00244-y
  28. Morgan Y, Mehta JS, Tan DTH. Superficial keratectomy as a prelude for endothelial keratoplasty in severe bullous keratopathy with anterior stromal scarring. Cornea. 2009;29(1):108–109. doi: 10.1097/ICO.0b013e3181a3c516
  29. Kimionis G, Oikonomakis K, Petrelli M, et al. Treatment of anterior corneal scarring, following DSAEK graft failure, with combined graft exchange and phototherapeutic keratectomy. Eye and Vision. 2017;4:12. doi: 10.1186/s40662-017-0078-6
  30. Juthani VV, Goshe JM, Srivastava SK, Ehlers JP. Association between transient interface fluid on intraoperative OCT and textural interface opacity after DSAEK surgery in the PIONEER study. Cornea. 2014;33(9):887–892. doi: 10.1097/ICO.0000000000000209
  31. Steverink JG, Wisse RPL. Intraoperative optical coherence tomography in descemet stripping automated endothelial keratoplasty: pilot experiences. Int Ophthalmol. 2017;37(4):939–944. doi: 10.1007/s10792-016-0338-9
  32. Titiyal JS, Kaur M, Shaikh F, Bari A. Acute-angled bevel’ sign to assess donor lenticule orientation in ultra-thin descemet stripping automated endothelial keratoplasty. BMJ Case Rep. 2019;12(2): e227927. doi: 10.1136/bcr-2018-227927
  33. Bachmann B, Taylor RS, Cursiefen C. Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty. Ophthalmology. 2010;117(7):1300–1305. doi: 10.1016/j.ophtha.2010.01.039
  34. Kang JJ, Ritterband DC, Lai K, et al. Descemet stripping endothelial keratoplasty in eyes with previous glaucoma surgery. Cornea. 2016;35(12):1520–1525. doi: 10.1097/ICO.0000000000001058
  35. Ishii N, Yamaguchi T, Yazu H, et al. Factors associated with graft survival and endothelial cell density after Descemet’s stripping automated endothelial keratoplasty. Sci Rep. 2016;6:25276. doi: 10.1038/srep25276

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient M. The stage IV of bullous keratopathy: а — severe epithelial-stromal edema of the cornea with bullous epithelium; b — the epithelium is removed; severe corneal stromal edema, gross impairment of corneal transparency are present

Download (152KB)
3. Fig. 2. The stage V of bullous keratopathy: а — severe epithelial-stomal corneal edema with epithelial bullosis and superficial neovascularization; b — the epithelium is removed; severe corneal stromal edema with deep neovascularization is present

Download (158KB)
4. Fig. 3. The OCT of the cornea: diffuse edema of the corneal epithelium and stroma, sub- and intraepithelial cystic cavities (bullae), subepithelial fibroplasia, fibroplasia at the level of Bowman and Descemet’s membranes: a — patient M.; b — patient K.

Download (140KB)
5. Fig. 4. Intraoperative tomographic image of the patient’s cornea and anterior chamber of the eye. Ultrathin endothelial graft near the posterior surface of the patient’s cornea (a) and in an inverted position (b). The rough (hairy) surface corresponds to the stroma, the smooth surface — to the endothelial layer

Download (209KB)
6. Fig. 5. Biomicroscopic picture and OCT of the cornea after 6 months after surgery: а — patient M.; b — patient K.

Download (246KB)

Copyright (c) 2022 Tereshchenko A.V., Demyanchenko S.K., Trifanenkova Y.M., Golubeva Y.Y., Vishnyakova E.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies