Exposure of the retina to subthreshold micro- and nanosecond laser at early stages of age-related macular degeneration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At the moment, there are no effective methods of treatment for age-related macular degeneration at its early stages. The perspective of treatment for age-related macular degeneration may be a method using subthreshold laser radiation.

In the present review of literature, analysis is represented of using both subthreshold micro- and nanosecond laser radiation on the retina in intermediate AMD stage. Subthreshold diode micro-pulse laser exposure of the retina in AMD has proven to be a safe procedure that allows for the regression of macular drusen.

While some authors noted an improvement in visual functions and a decrease in the probability of developing choroidal neovascularization with such treatment, multicenter trials have not yet confirmed the effectiveness of micro-pulse therapy as a method to prevent the neovascular AMD development.

Subthreshold nanosecond laser impact on the retina is safe for the structures of the eye fundus, theoretically more selective stimulates the natural biological and regenerative potential in the pigment epithelium and neuroepithelium due to remodeling of extracellular matrix, restores the thickness of the Bruch’s membrane and metabolism between external retinal layers and choriocapillaris.

Encouraging results have been achieved from the use of nanopulse therapy as a method of preventing the development of advanced stage AMD in the absence of reticular pseudodrusen, however, it seems premature to recommend this technology for widespread clinical use - further research is needed.

The prospects of invading in wide clinical practice of subthreshold nanosecond laser impact on the intermediate stage of AMD on the basis of the obtained clinical research results are encouraging (regression of drusen, preventing of AMD progression in absence of reticular pseudodrusen), but there is currently no evidence base. It is required to conduct further researches.

About the authors

Natalia A. Gavrilova

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Email: kafedra-eye@mail.ru
ORCID iD: 0000-0003-0368-296X

Dr. Sci. (Med.), Professor, Head of the Department of Eye Diseases, MD, Lecturer of the higher school

Russian Federation, Moscow

Nuria S. Gadzhieva

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Email: kafedra-eye@mail.ru
ORCID iD: 0000-0002-4197-1984

Cand. Sci. (Med.), Associate Professor, Head of the Academic Department of Eye Diseases, MD, Lecturer of the higher school

Russian Federation, Moscow

Elena A. Subbota

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: subbota.elena@yandex.ru
ORCID iD: 0000-0003-4806-572X

MD, Ophthalmologist, Postgraduate Student

Russian Federation, Moscow

References

  1. Congdon N, O’Colmain B, Klaver CC, et al. Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4): 477–485. doi: 10.1001/archopht.122.4.477
  2. Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet. 2012;379(9827):1728–1738. doi: 10.1016/S0140-6736(12)60282-7
  3. Stahl A. The diagnosis and treatment of age-related macular degeneration. Dtsch Arztebl Int. 2020;117(29–30):513–520. doi: 10.3238/arztebl.2020.0513
  4. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health. 2014;2(2):106–116. doi: 10.1016/S2214-109X(13)70145-1
  5. Gass JD. Drusen and disciform macular detachment and degeneration. Arch Ophthalmol. 1973;90(3):206–217. doi: 10.1001/archopht.1973.01000050208006
  6. Frennesson C, Nilsson SEG. Prophylactic laser treatment in early age-related maculopathy reduced the incidence of exudative complications. Br J Ophthalmol. 1998;82(10):1169–1174. doi: 10.1136/bjo.82.10.1169
  7. Duvall J, Tso MO. Cellular mechanisms of resolution of drusen after laser coagulation. An experimental study. Arch Ophthalmol. 1985;103(50):694–703. doi: 10.1001/archopht.1985.0105005008602
  8. Choroidal Neovascularization Prevention Trial Research Group. Laser treatment in eyes with large drusen. Short-term effects seen in a pilot randomized clinical trial. Ophthalmology. 1998;105(8): 11–23. doi: 10.1016/S0161-6420(98)98014-9
  9. The Choroidal Neovascularization Prevention Trial Research Group. Laser treatment in fellow eyes with large drusen: updated findings from a pilot randomized clinical trial. Ophthalmology. 2003;110(5):971–978. doi: 10.1016/S0161-6420(03)00098-8
  10. Friberg TR, Brennen PM, Freeman WR, et al. Prophylactic treatment of age-related macular degeneration report number 2: 810-nanometer laser to eyes with drusen: bilaterally eligible patients. Ophthalmic Surgery, Lasers and Imaging Retina. 2009;40(6):530–538. doi: 10.3928/15428877-20091030-01
  11. Friberg TR, Musch DC, Lim JI, et al. Prophylactic treatment of age-related macular degeneration report number 1: 810-nanometer laser to eyes with drusen. Unilaterally eligible patients. Ophthalmology. 2006;113(4):622–621. doi: 10.1016/j.ophtha.2005.10.066
  12. Virgili G, Michelessi M, Parodi MB, et al. Laser treatment of drusen to prevent progression to advanced age-related macular degeneration. Cochrane Database Syst Rev. 2015;10(10): CD006537. doi: 10.1002/14651858.CD006537.pub3
  13. Mojana F, Brar M, Cheng L, et al. Long-term SD-OCT/SLO imaging of neuroretina and retinal pigment epithelium after subthreshold infrared laser treatment of drusen. Retina. 2011;31(2):235–242. doi: 10.1097/IAE.0b013e3181ec80ad
  14. Cohn AC, Wu Z, Jobling AI, et al. Subthreshold nano-second laser treatment and age-related macular degeneration. J Clin Med. 2021;10(3):484. doi: 10.3390/jcm10030484
  15. Eng VA, Wood EH, Boddu S, et al. Preventing progression in nonexudative age-related macular degeneration with subthreshold laser therapy: a systematic review. Ophthalmic Surg Lasers Imaging Retina. 2019;50(3):61–70. doi: 10.3928/23258160-20190301-13
  16. Zheltov GI, Romanov GS, Romanov OG, Ivanova EV. Selektivnoe deistvie lazernykh impulsov na retinalnyi pigmentnyi ehpitelii. Fizicheskie osnovy. Novoe v oftalmologii. 2012;(3):37–43. (In Russ.)
  17. Berger JW. Thermal modelling of micropulsed diode laser retinal photocoagulation. Lasers Surg Med. 1997;20(4):409–415. doi: 10.1002/(sici)1096-9101(1997)20:4<409: aid-lsm6>3.0.co;2-u
  18. Yu D-Y, Cringle SJ, Su E, et al. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits. Investig Ophthalmol Vis Sci. 2005;46(3):988–999. doi: 10.1167/iovs.04-0767
  19. Framme C, Alt C, Schnell S, et al. Selective targeting of the retinal pigment epithelium in rabbit eyes with a scanning laser beam. Investig Ophthalmol Vis Sci. 2007;48(4):1782–1792. doi: 10.1167/iovs.06-0797
  20. Framme C, Schuele G, Roider J, et al. Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits. Ophthalmic Surg Lasers. 2002;33(5):400–409. doi: 10.3928/1542-8877-20020901-10
  21. Hayes JR, Wolbarsht ML. Thermal model for retinal damage induced by pulsed laser. Aerospace Medicine. 1968;39(5):474–480.
  22. Wang J, Quan Y, Dalal R, Palanker D. Comparison of continuous-wave and micropulse modulation in retinal laser therapy. Investig Ophthalmol Vis Sci. 2017;58(11):4722–4732. doi: 10.1167/iovs.17-21610
  23. Luttrull JK, Sinclair SH, Elmann S, Glaser BM. Low incidence of choroidal neovascularization following subthreshold diode micropulse laser (SDM) in high-risk AMD. PLoS One. 2018;13(8):0202097. doi: 10.1371/journal.pone.0202097
  24. Luttrull JK, Sinclair SH, Elmann S, et al. Slowed progression of age-related geographic atrophy following subthreshold laser. Clin Ophthalmol (Auckland, N.Z.). 2020;14:2983–2993. doi: 10.2147/OPTH.S268322
  25. Patent RUS № 2017110294/ 29.03.2017. Malinovskaya MA, Stanishevskaya OM. Sposob lecheniya makulyarnykh druz pri vozrastnoi makulodistrofii. (In Russ.)
  26. Patent RUS № 2696927/ 07.08.2019. Dalalishvili MA, Takhchidi KhP, Kachalina GF, et al. Sposob lecheniya retikulyarnykh psevdodruz mikroimpul’snym lazernym vozdeistviem. (In Russ.)
  27. Querques G, Sacconi R, Gelormini F, et al. Subthreshold laser treatment for reticular pseudodrusen secondary to age-related macular degeneration. Sci Rep. 2021;11(1):2193. doi: 10.1038/s41598-021-81810-7
  28. Roider J, Brinkmann R, Wirbelauer C, et al. Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study. Br J Ophthalmol. 2000;84(1):40–47. doi: 10.1136/bjo.84.1.40
  29. Zhang JJ, Sun Y, Hussain AA, Marshall J. Laser-mediated activation of human retinal pigment epithelial cells and concomitant release of matrix metalloproteinases. Investig Ophthalmol Vis Sci. 2012;53(6):2928–2937. doi: 10.1167/iovs.11-8585
  30. Jobling AI, Guymer RH, Vessey KA, et al. Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage. FASEB journal. 2015;29(2):696–710. doi: 10.1096/fj.14-262444
  31. Chidlow G, Shibeeb O, Plunkett M, et al. Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser. Investig Ophthalmol Vis Sci. 2013;54(3):2319–2332. doi: 10.1167/iovs.12-11204
  32. Vessey KA, Ho T, Jobling AI, et al. nanosecond laser treatment for age-related macular degeneration does not induce focal vision loss or new vessel growth in the retina. Investig Ophthalmol Vis Sci. 2018;59(2):731–745. doi: 10.1167/iovs.17-23098
  33. Chichan H, Maus M, Heindl LM. subthreshold nanosecond laser, from trials to real-life clinical practice: A cohort study. Clin Ophthalmol (Auckland, N.Z.). 2021;15:1887–1895. doi: 10.2147/OPTH.S307671
  34. Gunawan JR, Thiele SH, Isselmann B, et al. Effect of subthreshold nanosecond laser on retinal structure and function in intermediate age-related macular degeneration. Clin Exp Ophthalmol. 2022;50(1):31–39. doi: 10.1111/ceo.14018
  35. Hanna V, Oakley J, Russakoff D, Choudhry N. Effects of subthreshold nanosecond laser therapy in age-related macular degeneration using artificial intelligence (STAR-AI Study). PLoS One. 2021;4: e0250609. doi: 10.1371/journal.pone.0250609
  36. Smith TR. Sub-threshold nanosecond laser (SNL) treatment in intermediate AMD (IAMD). Ann Eye Sci. 2019;4:2. doi: 10.21037/aes.2018.12.04
  37. Wu Z, Luu CD, Hodgson LAB, et al. Secondary and exploratory outcomes of the subthreshold nanosecond laser intervention randomized trial in age-related macular degeneration: A LEAD study report. Ophthalmology. Retina. 2019;3(12):1026–1034. doi: 10.1016/j.oret.2019.07.008
  38. Guymer RH, Wu Z, Hodgson LAB, et al. Subthreshold nanosecond laser intervention in age-related macular degeneration: The LEAD randomized controlled clinical trial. Randomized Controlled Trial Ophthalmology. 2019;126(6):829–838. doi: 10.1016/j.ophtha.2018.09.015
  39. Guymer RH, Chen FK, Hodgson LAB, et al. Subthreshold nanosecond laser in age-related macular degeneration: observational extension study of the LEAD clinical trial. Ophthalmol Retina. 2021;5(12):1196–1203. doi: 10.1016/j.oret.2021.02.015
  40. Rosenfeld PJ, Feuer WJ. Warning: do not treat intermediate AMD with laser therapy. Ophthalmology. 2019;126(6):839–840. doi: 10.1016/j.ophtha.2018.12.016

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Gavrilova N.A., Gadzhieva N.S., Subbota E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies