Burn injury management and potential use of human umbilical cord-derived tissue-engineered products in burn injury medicine

Cover Page

Cite item

Full Text

Abstract

Burn injuries continue to be a significant concern due to their high prevalence and delayed healing caused by extensive tissue damage and prolonged regeneration. This work focused on a comprehensive analysis of the advantages and disadvantages of existing therapeutic options for burn injuries of varying degrees, as well as promising areas of regenerative medicine. Published data were analyzed to examine pathophysiological mechanisms of burn injuries and their severity grading. Modern burn management includes surgical and topical conservative approaches. Surgical treatment includes necrectomy and skin grafting, which requires donor tissue sites. Topical conservative treatment employs various drugs and medical devices, such as antiseptics, regenerants, and wound dressings. The range of available drugs for burn injury management is limited. These limitations, along with individual disadvantages of existing therapeutic options, necessitate the search for innovative approaches to burn injury management. One promising area is tissue engineering, which uses biologically engineered products to activate a patient’s stem cells. Human umbilical cord Wharton’s jelly is one of the most promising biomaterials. This extraembryonic hard, mucous connective tissue has a remarkable regenerative capacity. Its acellular scaffold promotes cell migration and proliferation, presents growth factors, and stimulates angiogenesis. Human umbilical cord Wharton’s jelly contains collagen, hyaluronic acid, fibronectin, and growth factors that promote regeneration. The proposed technique for producing human umbilical cord-derived acellular scaffold and hydrogel preserves structural and functional components of native human umbilical cord Wharton’s jelly in the finished product. Preclinical and clinical trials have demonstrated the product’s efficacy and safety in treating deep wounds and promoting healing and autograft survival. Human umbilical cord-derived acellular hydrogel is a promising solution for developing new dosage forms and managing burn injuries.

About the authors

Anastasiya A. Kovaleva

Military Medical Academy

Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-9726-0946
SPIN-code: 2966-4221

postgraduate student

Russian Federation, Saint Petersburg

Yunna Yu. Zhidkova

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-0151-6626
SPIN-code: 7648-8460

MD, Cand. Sci. (Pharmaceuticals)

Russian Federation, Saint Petersburg

Lidiya I. Kalyuzhnaya-Zemlyanaya

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-6698-4872
SPIN-code: 1348-3306

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Dmitrij V. Tovpeko

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-0286-3056
SPIN-code: 3698-4656

junior research assistant

Russian Federation, Saint Petersburg

Yuri V. Miroshnichenko

Saint Petersburg State Chemical and Pharmaceutical University

Email: miryv61@gmail.com
ORCID iD: 0000-0002-3645-2071
SPIN-code: 9723-1148

MD, Dr. Sci. (Pharmaceuticals), Professor, honored health worker of the Russian Federation

Russian Federation, Saint Petersburg

Ol'ga A. Vatanskaya

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-9125-8757
SPIN-code: 3230-6074

MD, Cand. Sci. (Pharmaceuticals)

Russian Federation, Saint Petersburg

Ekaterina A. Klimkina

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-3391-7208
SPIN-code: 9298-8619

MD, Cand. Sci. (Pharmaceuticals)

Russian Federation, Saint Petersburg

Elena S. Smirnova

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0009-4820-4313
SPIN-code: 9290-4277

MD, Cand. Sci. (Pharmaceuticals)

Russian Federation, Saint Petersburg

Il'ja A. Lihogra

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0007-8742-7363
SPIN-code: 4798-1812

MD, Cand. Sci. (Pharmaceuticals)

Russian Federation, Saint Petersburg

Vladimir E. Chernov

Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-2440-3782
SPIN-code: 8315-1161

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Maksimova NV, Lyundup AV, Lubimov RO, et al. Pathophysiological aspects of wound healing in normal and diabetic foot. Annals of the Russian academy of medical sciences. 2014;69(11–12):110–117. doi: 10.15690/vramn.v69i11-12.1192 EDN: RHQYBU
  2. Dimitrova AN, Chaneva GS, Dimitrova MI, et al. The quality of intensive care in the treatment of patients with burns. MEDICUS. 2017;5(17):56–61. EDN: RVZJAQ
  3. Tyukavin AI. The main aspects of local pathogenetic disorders in skin burns. Interaktivnaya nauka. 2017;8(18):22–24. EDN: ZDULXR
  4. Klassifikatsiya termicheskikh ozhogov po glubine, prinyataya na XXVII Vsesoyuznom s''ezde khirurgov v 1960 g. In: Kommersant. 03.10.2011. Available at: https://www.kommersant.ru/doc/1786206 (accessed 15.02.2025). (In Russ.)
  5. Shapovalov KG, Konnov VA. Clinical protocols for intensive care of burn trauma. Chita; 2013. (In Russ.)
  6. Mikhin IV, Kukhtenko YuV. Burns and frostbite: A teaching aid. Volgograd; 2011. (In Russ.)
  7. Vitalev AE. Konservativnoe lechenie ozhogov. Webmedinfo.ru. Available at: https://yandex.ru/health/turbo/articles?id=5326 (accessed 15.02.2025). (In Russ.)
  8. Alekseev AA, Bobrovnikov AE, Khunafin SN. Treatment of superficial and borderline burn wounds using modern wound dressings. Meditsinskii vestnik Bashkortostana. 2013;8(3):25–30. EDN: QCKPRJ
  9. Shapovalov SG. Modern wound coverings in combustiology. FARMindeks-Praktik. 2005;(8):38–46. (In Russ.)
  10. Shablin DV, Pavlenko SG, Yevglevsky AA, et al. Modern wound dressings in local treatments of different wounds. Fundamental’nye issledovaniya. 2013;(12–2):361–365. EDN: RUSCBB
  11. Sultanova SA, Tupikin DV, Shcherbakova IV. The concept of bioengineering in medicine. Bioengineering of artificial lymphoid organs. In: Week of Russian science (Werus-2024) 2024 Apr 16–19. Saratov; 2024. P. 1087–1088. (In Russ.)
  12. Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018–1029. doi: 10.1038/sj.jid.5700715
  13. Tovpeko DV, Kondratenko AA, Kalyuzhnaya LI, et al. The biotechnological cell-free non-immunogenic product preserves the main regenerative structural components of the human umbilical cord. Biotekhnologiya. 2023;39(1):49–59. doi: 10.56304/S0234275823010118 EDN: PVPMQO
  14. Morozov AM, Sergeev AN, Sergeev NA, et al. Modern methods of stimulating the regeneration process of postoperative wounds. Sibirskoe meditsinskoe obozrenie. 2020;(3(123)):7. EDN: WHYDTP
  15. Galimov OV, Khafizov RM, Abdullin AI, et al. Treatment of patients by collagen-based materials. Bashkirskii khimicheskii zhurnal. 2006;13(4):108–111. EDN: KTWVZH
  16. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17(2):153–162. doi: 10.1111/j.1524-475X.2009.00466.x
  17. Patent RUS № 2745995C1/ 16.09.2020. Kalyuzhnaya-Zemlyanaya LI, Chernov VE, Chebotarev SV, Zemlyanoy DA. Method for manufacturing a cellless hydrogel from warton’s jelly made of human umbilical cord for intra-article application. Available at: https://patenton.ru/patent/RU2745995C1 EDN: BSVYAE
  18. Beiki B, Zeynali B, Seyedjafari E. Fabrication of a three dimensional spongy scaffold using human Wharton’s jelly derived extra cellular matrix for wound healing. Mater Sci Eng C Mater Biol Appl. 2017;78:627–638. doi: 10.1016/j.msec.2017.04.074
  19. Kalyuzhnaya LI, Volov DA, Chebotarev SV, et al. Experience of using cell-free hydrolysate of human umbilical cord in the treatment of patients with deep wounds. Vestnik transplantologii i iskusstvennykh organov. 2024;26(S):187. doi: 10.15825/1995-1191-2024-S-187 EDN: KTWFKO

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).