Early diagnosis of Alzheimer’s disease: potential of 18F-FDG PET as a biomarker of neurodegeneration

Cover Page

Cite item

Abstract

BACKGROUND: Dementia is considered one of the most actual medical problems of our time, being one of the main causes of disability among the elderly, and its prevalence will only increase in the coming years. The first place among conditions leading to dementia is given to Alzheimer’s disease (up to 70%). The effectiveness of Alzheimer’s disease therapy largely depends on the timeliness of diagnosis, which leads to the need to search for diagnostic markers that allow to detect the disease at the earliest stages.

AIM: To evaluate the possibilities of using 18F-FDG PET for the early diagnosis of Alzheimer’s disease.

MATERIALS AND METHODS: Cerebral metabolism was assessed using positron emission tomography with 18F-FDG. A total of 183 patients were divided into groups depending on their diagnosis and the severity of cognitive impairment.

RESULTS: A characteristic pattern of cerebral metabolic disorders has been established in patients with Alzheimer’s disease. It can be detected in the early pre-dementia stages and has developmental features as the disease progresses. The pattern was characterized by bilateral hypometabolism in the parietal and temporal cortex with a predominance in its mediobasal sections. An important marker of the development of the neurodegenerative process was a metabolic disorder of the cingulate gyrus, the posterior sections of which are affected already at the earliest stages of the disease, while the involvement of its anterior sections reflects the transition to the stage of severe dementia. Described metabolic disorders prevailed in the dominant (left) brain hemisphere at all stages of the disease.

CONCLUSION: Currently 18F-FDG PET can be considered the most informative of the available methods for the early diagnosis of Alzheimer’s disease which have a fairly high degree of accuracy.

About the authors

Andrey Yu. Emelin

Military Medical Academy

Author for correspondence.
Email: emelinand@rambler.ru
ORCID iD: 0000-0002-4723-802X
SPIN-code: 9650-1368
Scopus Author ID: 35773115100
ResearcherId: 1-8241-2016

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Igor' V. Litvinenko

Military Medical Academy

Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0001-8988-3011
SPIN-code: 6112-2792
Scopus Author ID: 35734354000
ResearcherId: F-9120-2013

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Vladimir Yu. Lobzin

Military Medical Academy; Saint Petersburg University

Email: vladimirlobzin@mail.ru
ORCID iD: 0000-0003-3109-8795
SPIN-code: 7779-3569
Scopus Author ID: 57203881632
ResearcherId: I-4819-2016

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Peterburg; Saint Peterburg

Ivan A. Lupanov

Military Medical Academy

Email: lupanov.ia@mail.ru
ORCID iD: 0009-0008-7918-9227
SPIN-code: 2986-6679
ResearcherId: НОА-9697-2023

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Kristina A. Kolmakova

Military Medical Academy

Email: kris_kolmakova@mail.ru
ORCID iD: 0000-0001-8657-1901
SPIN-code: 3058-8088
ResearcherId: I-8241-2016

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Pavel S. Dynin

Military Medical Academy

Email: pavdynin@yandex.ru
ORCID iD: 0000-0001-5006-8394
SPIN-code: 8323-3951
Scopus Author ID: 57194607735
ResearcherId: I-3470-2016

M. D., Ph. D. (Medicine);

Russian Federation, Saint Petersburg

Igor' V. Boykov

Military Medical Academy

Email: qwertycooolt@mail.ru
ORCID iD: 0000-0001-9594-9822
SPIN-code: 1453-8437
ResearcherId: М-8449-2016

M.D., D.Sc. (Medicine); Professor

Russian Federation, Saint Petersburg

References

  1. Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33. doi: 10.1038/s41572-021-00269-y
  2. Alzheimer’s Disease facts and figures. Alzheimers Dement. 2021;17(3):327–406. doi: 10.1002/alz.12328
  3. Emelin AYu, Lobzin VYu, Vorobyov SV. Cognitive impairment: a guide for physicians. Moscow; 2019. 414 p. (In Russ.) ISBN 978-5-00030-673-4
  4. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34(7):939–944. doi: 10.1212/wnl.34.7.939
  5. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–279. doi: 10.1016/j.jalz.2011.03.008
  6. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018
  7. Dubois B, Villain N, Frisoni GB, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021;20(6):484–496. doi: 10.1016/S1474-4422(21)00066-1
  8. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment. JAMA. 2014;312(23):2551–2561. doi: 10.1001/jama.2014.13806
  9. Ritchie LJ, Tuokko H. Patterns of cognitive decline, conversion rates, and predictive validity for 3 models of MCI. Am J Alzheimer’s Dis Other Dementiasr. 2010;25(7):592–603. doi: 10.1177/1533317510382286
  10. Blennow K, Shaw LM, Stomrud E et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Aβ(1-42), pTau and tTau CSF immunoassays. Sci Rep. 2019;9(1):19024. doi: 10.1038/s41598-019-54204-z
  11. Xiong X, He H, Ye Q, et al. Alzheimer’s disease diagnostic accuracy by fluid and neuroimaging ATN framework. CNS Neurosci Ther. 2024;30(2): e14357. doi: 10.1111/cns.14357
  12. Caminiti SP, Ballarini T, Sala A, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin. 2018;18:167–177. doi: 10.1016/j.nicl.2018.01.019
  13. Levin F, Ferreira D, Lange C, et al. Data-driven FDG-PET subtypes of Alzheimer’s disease-related neurodegeneration. Alzheimers Res Ther. 2021; 13: 49. doi: 10.1186/s13195-021-00785-9
  14. Lobzin VYu. Comprehensive early diagnostics of cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(11): 72–79. (In Russ.) EDN: VHCXGP doi: 10.17116/jnevro201511511172-79
  15. Emelin AYu, Odinak MM, Lobzin VYu, et al. Current capacities for neuroimaging in the differential diagnosis of cognitive impairments. Neurology, Neuropsychiatry, Psychosomatics. 2012;(S2):51–55. (In Russ.) EDN: PHCXDZ doi: 10.14412/2074-2711-2012-2509
  16. Lupanov IA. Positron emission tomography imaging in early verification of Alzheimer’s disease and vascular cognitive impairment. Bulletin of the Russian Military Medical Academy. 2014;(1(45)):40–45. (In Russ.) EDN: RYCBQJ
  17. Petersen R, Touchon J. Consensus on mild cognitive impairment: EADS–ADCS. Research and Practice in Alzheimer’s Disease. 2005; 10:38–46.
  18. Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS–AIREN International workshop. Neurology. 1993;43(2): 250–260. doi: 10.1212/wnl.43.2.250
  19. Stanzhevsky AA, Tyutin LA, Kostenikov NA. The possibilities of positron emission tomography in complex diagnosis and differential diagnosis of different nosological forms of dementia. Radiation diagnostics and therapy. 2011;(1(2)):55–63. (In Russ.) EDN: NUUOAR
  20. Silverman DHS. Brain 18F-FDG PET in the Diagnosis of neurodegenerative dementias: Comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45(4):594–607. PMID: 15073255
  21. Kerrouche N, Herholz K, Mielke R, et al. 18FDG PET in vascular dementia: differentiation from Alzheimer’s disease using voxel-based multivariate analysis. J Cereb Blood Flow Metab. 2006;26(9): 1213–1221. doi: 10.1038/sj.jcbfm.9600296
  22. Kaneta T, Okamura N, Arai A, et al. Analysis of early phase [11C] BF-227 PET, and its application for anatomical standardization of late-phase images for 3D-SSP analysis. Japanese J Radiol. 2014;32(3):1–7. doi: 10.1007/s11604-013-0276-7
  23. Schöll M, Almkvist O, Axelman K, et al. Glucose metabolism and PIB binding in carriers of His163Tyr presenilin 1 mutation. Neurobiol Aging. 2011;32(8):1388–1399. doi: 10.1016/j.neurobiolaging.2009.08.016
  24. Mosconi L, De Santi S, Brys M, et al. Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psychiatry. 2008;63(9): 609–618. doi: 10.1016/j.biopsych.2007.05.030
  25. Mosconi L, Brys M, Switalski R, et al. Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci USA. 2007;104(48):19067–19072. doi: 10.1073/pnas.0705036104
  26. Gordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. Lancet Neurol. 2018;17(3):241–250. doi: 10.1016/S1474-4422(18)30028-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Alzheimer’s disease, mild dementia: impaired accumulation of 18F-FDG in the projection of the parietal, temporal lobes, hippocampus, posterior cingulate gyrus

Download (203KB)
3. Fig. 2. Alzheimer’s disease, severe dementia: pronounced metabolic disorders in the parietal, temporal lobes, hippocampus on both sides, anterior and posterior cingulate gyrus

Download (164KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».