阿尔茨海默病的早期诊断:18F-FDG PET作为神经退行性标志物的应用潜力

封面

如何引用文章

详细

背景。痴呆症是当今最重要和紧迫的医学问题之一,因为它是导致老年人残疾的主要原因之一,且其发病率在未来几年内将继续增加。阿尔茨海默病是导致痴呆的主要原因,占所有痴呆病例的70%。治疗效果在很大程度上依赖于及时诊断,因此需要找到能够在早期阶段检测疾病的诊断标志物。

研究目的。评估18F-FDG PET在诊断伴随高级皮层功能障碍的疾病中的应用潜力,并验证该方法在阿尔茨海默病早期诊断中的有效性。

材料和方法。对183名具有不同疾病类型和认知缺陷程度的患者进行了综合检查。利用18F-FDG PET结合CT分析不同脑区的代谢状况。

结果。发现阿尔茨海默病患者在痴呆前阶段即存在特征性的脑代谢异常模式,且随着疾病进展呈现一定规律性。该模式表现为双侧顶叶和颞叶皮层区域的低代谢,尤其在内侧基底部区域更为显著。扣带回的代谢异常是神经退行性过程的重要标志,后部区域在疾病最早期即受到影响,而前部区域受累则标志着更严重的认知缺陷。此外,随着疾病的进展,还观察到枕叶皮层、全扣带回以及额叶皮层的继发性低代谢。代谢异常在大脑优势半球(左半球)更为显著。

结论。通过18F-FDG PET结合CT检测特定的低代谢模式,可以实现阿尔茨海默病的早期鉴别诊断, 并具有较高的准确性。18F-FDG PET是目前临床实践中识别神经退行性变化早期阶段的最具信息量的方法之一。

作者简介

Andrey Yu. Emelin

Military Medical Academy

编辑信件的主要联系方式.
Email: emelinand@rambler.ru
ORCID iD: 0000-0002-4723-802X
SPIN 代码: 9650-1368
Scopus 作者 ID: 35773115100
Researcher ID: 1-8241-2016

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

Igor' V. Litvinenko

Military Medical Academy

Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0001-8988-3011
SPIN 代码: 6112-2792
Scopus 作者 ID: 35734354000
Researcher ID: F-9120-2013

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

Vladimir Yu. Lobzin

Military Medical Academy; Saint Petersburg University

Email: vladimirlobzin@mail.ru
ORCID iD: 0000-0003-3109-8795
SPIN 代码: 7779-3569
Scopus 作者 ID: 57203881632
Researcher ID: I-4819-2016

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Peterburg; Saint Peterburg

Ivan A. Lupanov

Military Medical Academy

Email: lupanov.ia@mail.ru
ORCID iD: 0009-0008-7918-9227
SPIN 代码: 2986-6679
Researcher ID: НОА-9697-2023

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Kristina A. Kolmakova

Military Medical Academy

Email: kris_kolmakova@mail.ru
ORCID iD: 0000-0001-8657-1901
SPIN 代码: 3058-8088
Researcher ID: I-8241-2016

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Pavel Dynin

Military Medical Academy

Email: pavdynin@yandex.ru
ORCID iD: 0000-0001-5006-8394
SPIN 代码: 8323-3951
Scopus 作者 ID: 57194607735
Researcher ID: I-3470-2016

M. D., Ph. D. (Medicine);

俄罗斯联邦, Saint Petersburg

Igor' Boykov

Military Medical Academy

Email: qwertycooolt@mail.ru
ORCID iD: 0000-0001-9594-9822
SPIN 代码: 1453-8437
Researcher ID: М-8449-2016

M.D., D.Sc. (Medicine); Professor

俄罗斯联邦, Saint Petersburg

参考

  1. Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33. doi: 10.1038/s41572-021-00269-y
  2. Alzheimer’s Disease facts and figures. Alzheimers Dement. 2021;17(3):327–406. doi: 10.1002/alz.12328
  3. Emelin AYu, Lobzin VYu, Vorobyov SV. Cognitive impairment: a guide for physicians. Moscow; 2019. 414 p. (In Russ.) ISBN 978-5-00030-673-4
  4. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34(7):939–944. doi: 10.1212/wnl.34.7.939
  5. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–279. doi: 10.1016/j.jalz.2011.03.008
  6. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018
  7. Dubois B, Villain N, Frisoni GB, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021;20(6):484–496. doi: 10.1016/S1474-4422(21)00066-1
  8. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment. JAMA. 2014;312(23):2551–2561. doi: 10.1001/jama.2014.13806
  9. Ritchie LJ, Tuokko H. Patterns of cognitive decline, conversion rates, and predictive validity for 3 models of MCI. Am J Alzheimer’s Dis Other Dementiasr. 2010;25(7):592–603. doi: 10.1177/1533317510382286
  10. Blennow K, Shaw LM, Stomrud E et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Aβ(1-42), pTau and tTau CSF immunoassays. Sci Rep. 2019;9(1):19024. doi: 10.1038/s41598-019-54204-z
  11. Xiong X, He H, Ye Q, et al. Alzheimer’s disease diagnostic accuracy by fluid and neuroimaging ATN framework. CNS Neurosci Ther. 2024;30(2): e14357. doi: 10.1111/cns.14357
  12. Caminiti SP, Ballarini T, Sala A, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin. 2018;18:167–177. doi: 10.1016/j.nicl.2018.01.019
  13. Levin F, Ferreira D, Lange C, et al. Data-driven FDG-PET subtypes of Alzheimer’s disease-related neurodegeneration. Alzheimers Res Ther. 2021; 13: 49. doi: 10.1186/s13195-021-00785-9
  14. Lobzin VYu. Comprehensive early diagnostics of cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(11): 72–79. (In Russ.) EDN: VHCXGP doi: 10.17116/jnevro201511511172-79
  15. Emelin AYu, Odinak MM, Lobzin VYu, et al. Current capacities for neuroimaging in the differential diagnosis of cognitive impairments. Neurology, Neuropsychiatry, Psychosomatics. 2012;(S2):51–55. (In Russ.) EDN: PHCXDZ doi: 10.14412/2074-2711-2012-2509
  16. Lupanov IA. Positron emission tomography imaging in early verification of Alzheimer’s disease and vascular cognitive impairment. Bulletin of the Russian Military Medical Academy. 2014;(1(45)):40–45. (In Russ.) EDN: RYCBQJ
  17. Petersen R, Touchon J. Consensus on mild cognitive impairment: EADS–ADCS. Research and Practice in Alzheimer’s Disease. 2005; 10:38–46.
  18. Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS–AIREN International workshop. Neurology. 1993;43(2): 250–260. doi: 10.1212/wnl.43.2.250
  19. Stanzhevsky AA, Tyutin LA, Kostenikov NA. The possibilities of positron emission tomography in complex diagnosis and differential diagnosis of different nosological forms of dementia. Radiation diagnostics and therapy. 2011;(1(2)):55–63. (In Russ.) EDN: NUUOAR
  20. Silverman DHS. Brain 18F-FDG PET in the Diagnosis of neurodegenerative dementias: Comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45(4):594–607. PMID: 15073255
  21. Kerrouche N, Herholz K, Mielke R, et al. 18FDG PET in vascular dementia: differentiation from Alzheimer’s disease using voxel-based multivariate analysis. J Cereb Blood Flow Metab. 2006;26(9): 1213–1221. doi: 10.1038/sj.jcbfm.9600296
  22. Kaneta T, Okamura N, Arai A, et al. Analysis of early phase [11C] BF-227 PET, and its application for anatomical standardization of late-phase images for 3D-SSP analysis. Japanese J Radiol. 2014;32(3):1–7. doi: 10.1007/s11604-013-0276-7
  23. Schöll M, Almkvist O, Axelman K, et al. Glucose metabolism and PIB binding in carriers of His163Tyr presenilin 1 mutation. Neurobiol Aging. 2011;32(8):1388–1399. doi: 10.1016/j.neurobiolaging.2009.08.016
  24. Mosconi L, De Santi S, Brys M, et al. Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psychiatry. 2008;63(9): 609–618. doi: 10.1016/j.biopsych.2007.05.030
  25. Mosconi L, Brys M, Switalski R, et al. Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci USA. 2007;104(48):19067–19072. doi: 10.1073/pnas.0705036104
  26. Gordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. Lancet Neurol. 2018;17(3):241–250. doi: 10.1016/S1474-4422(18)30028-0

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Alzheimer’s disease, mild dementia: impaired accumulation of 18F-FDG in the projection of the parietal, temporal lobes, hippocampus, posterior cingulate gyrus

下载 (203KB)
3. Fig. 2. Alzheimer’s disease, severe dementia: pronounced metabolic disorders in the parietal, temporal lobes, hippocampus on both sides, anterior and posterior cingulate gyrus

下载 (164KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».