Air ozonization for prevention of bacterial and viral infections

Cover Page

Cite item

Full Text

Abstract

Objective. To assess the effectiveness of the low-dose air ozonation for disinfection of the air in the working room.

Materials and methods. We investigated 90 air samples (3 samples were taken weekly before and after the production meeting using the automatic sampling device of biological aerosols of air PU-1B). The total bacterial contamination, the content of staphylococci and mold spores were determined. Ozonation of the room (83.3 m3) was carried out for 20 minutes by means of domestic ozonator. The accumulated dose of ozone was 133.3 mg (1.6 mg/m3). Statistical data processing was carried out using the MedStat licensed program. The median, median error (Me ± me), left and right 95 % confidence intervals (95 % CI) were calculated. Paired comparisons were made using Wilcoxon's T-test.

Results. After the meeting, the total bacterial contamination of the air was 56.0 ± 9.3 (47.0–78.0) CFU. The content of staphylococci and mold spores in the air was 85.5 ± 12.5 (76.0–100.0) and 44.5 ± 6.5 (32.0–54.0) CFU, respectively. After ozonation, the total bacterial contamination of the air was 14.5 ± 3.6 (10.0–21.0) CFU. The content of staphylococci and mold spores in the air after ozonation was 35.5 ± 6.7 (25.0–52.0) and 26.0 ± 5.0 (18.0–32.0) CFU, respectively. Ozonation of the room provided a significant decrease (p < 0.001) in all three of the above indicators. The room ozonation carried out promoted a reliable decrease (p < 0.001) in all the above mentioned parameters.

Conclusions. The above data and analysis of the literature show the possibility of using low doses of ozone for the prevention of bacterial, fungal and viral infections including SARS-CoV-2. Further study and development of reasonable modes of ozone disinfection, including low doses of ozone, is needed, as well as determination of the efficiency degree of air disinfection with non-toxic gas concentrations.

About the authors

Aleksandr S. Prylutskyi

M. Gorky Donetsk National Medical University

Email: aspr@mail.ru

MD, PhD, Professor, Department of Microbiology, Virology, Immunology and Allergology

Ukraine, Donetsk

Sergey V. Kapranov

Alchevsk City Sanitary and Epidemiological Station

Email: kapranov_sv0209@mail.ru

MD, PhD, Deputy Chief Physician, Deputy Chief State Sanitary Physician of Alchevsk and Perevalsky Region

Ukraine, Lugansk

Kseniia E. Tkachenko

M. Gorky Donetsk National Medical University

Email: t.xeniya@ukr.net

Candidate of Medical Sciences, Assistant, Department of Microbiology, Virology, Immunology and Allergology

Ukraine, Donetsk

Lubov I. Yalovega

Alchevsk City Sanitary and Epidemiological Station

Author for correspondence.
Email: alch_ses_ok@mail.ru

bacteriologist, Head of Bacteriological Laboratory

Ukraine, Lugansk

References

  1. Kemp S.J., Kuehn T.H., Pui D.Y.H., Vesley D., Streifel A.J. Filter collection efficiency and growth of microorganisms on filters loaded with outdoor air. ASHRAE Transaction 1995; 1: 228.
  2. Prilutskiy A.S. Coronavirus disease – 2019: what a dermatovenerologist needs to know. Torsuevskie chteniya: nauchno-prakticheskiy zhurnal po dermatologii, venerologii i kosmetologii 2020; 1 (27): 62–71 (in Russian).
  3. Prilutskiy A.S., Miminoshvili V.R. Transmission mechanisms of SARS-COV-2 and methods of their prevention. Communication 1. Airborne and aerosol pathways. Vestnik gigieny i epidemiologii 2020; 24 (2): 224–232 (in Russian).
  4. Prilutskiy A.S., Miminoshvili V.R. Transmission mechanisms of SARS-COV-2 and methods of their prevention. Communication 2. Air-dust and aerosol paths. Use of respirators and masks. Vestnik gigieny i epidemiologii 2020; 24 (2): 233–242 (in Russian).
  5. Sharma M., Hudson J.B. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control 2008; 36 (8): 559–563.
  6. Hudson J.B., Sharma M., Vimalanathan S. Development of a practical method for using ozone gas as a virus decontaminating agent. Ozone Sci Eng 2009; 31 (3): 216–223.
  7. Sallustio F., Cardinale G., Voccola S., Picerno A., Porcaro P., Gesualdo L. Ozone eliminates novel coronavirus Sars-CoV-2 in mucosal samples. New Microbes New Infect 2021; 43: 100927.
  8. Guidelines for microbiological control in pharmacies, approved the Main Sanitary and Epidemiological Directorate of the Ministry of Health of the USSR dated December 29, 1984. No. 3182-84. Moscow 1984; 7 (in Russian).
  9. Multifunctional digital ozonizer model LF-V7: technical data sheet. Kiev 2007; 8 (in Russian).
  10. Lyakh Yu.E., Gur'yanov V.G., Khomenko V.N., Panchenko O.A. Basics of computer biostatistics: analysis of information in biology, medicine and pharmacy using the MedStat statistical package. Donetsk: Papakitsa E.K. 2006; 214 (in Russian)
  11. Kondratov A.P., Ryabkin M.V., Platonov A.V. Antimicrobial efficiency of physical and chemical methods of air disinfection. Dezinfektsionnoe delo 2006; 2: 40-43. (in Russian)
  12. Martuzzi M., Mitis F., Iavarone I., Serinelli M. Health impact of PM10 and ozone in 13 Italian cities. Copenhagen: World Health Organization 2006; 133.
  13. Jarvis M. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications Front. Public Health 2020; 8: 590041.
  14. Hua C., Miao Z., Zheng J., Huang Q., Sun Q., Lu H., Su F., Wang W., Huang L., Chen D., Xu Z., Ji L., Zhang H., Yang X., Li M., Mao Y., Ying M., Ye S., Shu Q., Chen E., Liang J., Wang W., Chen Z., Li W., Fu J. Epidemiological features and viral shedding in children with SARS-CoV-2 infection. J Med Virol 2020; 92: 2804–2812.
  15. Qian G.Q., Chen X.Q., Lv D.F., Ma A.H.Y., Wang L.P., Yang N.B., Chen X.M. Duration of SARS-CoV-2 viral shedding during COVID-19 infection. Infect Dis (Lond.) 2020; 52: 511–512.
  16. Oh D., Böttcher S., Kröger S., von Kleist M. SARS-CoV-2 transmission routes and implications for self- and non-self-protection. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 29: 1–8.
  17. Long Q.X., Tang X.J., Shi Q.L., Li Q., Deng H.J., Yuan J., Hu J.L., Xu W., Zhang Y., Lv F.J. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020; 26: 1200–1204.
  18. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia J. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 2020; 382: 1177–1179.
  19. Avanzato V., Matson M., Seifert S., Pryce R., Williamson B., Anzick S., Barbian K., Judson S., Fischer E., Martens C., Bowden T., Wit E., Riedo F., Munster V. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell 2020; 183 (7): 1901–1912.
  20. Hu Z., Song C., Xu C., Jin G., Chen Y., Xu X., Ma H., Chen W., Lin Y., Zheng Y., Wang J., Hu Z., Yi Y., Shen H. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci 2020; 63: 706–711.
  21. Xiang Ong S., Chiew C., Wei Ang L., Mak T., Cui L., Toh M., Ding Lim Y., Hua Lee P., Hong Lee T., Ying Chia P., Maurer-Stroh S., Lin R., Leo Y., Lee V., Chien Lye D., Young B. Clinical and virological features of SARS-CoV-2 variants of concern: a retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315 (Beta), and B.1.617.2 (Delta). Clin Infect Dis 2021; ciab721.
  22. Dubuis M., Dumont-Leblond N., Lalibertґe C., Veillette M., Turgeon N., Jean J., Duchaine C. Ozone efficacy for the control of airborne viruses: bacteriophage and norovirus models. PLoS One 2020; 15: e0231164, available at: https://journals.plos.org/plosone/article?id = 10.1371/journal.pone.0231164
  23. Criscuolo E., Diotti R.A., Ferrarese R., Alippi C., Viscardi G., Signorelli C., Mancini N., Clementi M., Clementi N. Fast inactivation of SARS-CoV-2 by UV-C and ozone exposure on different materials. Emerg Microbes Infect 2021; 10 (1): 206–210.
  24. Percivalle E., Clerici M., Cassaniti I., Vecchio Nepita E., Marchese P., Olivati D., Catelli C., Berri A., Baldanti F., Marone P., Bruno R., Triarico A., Lago P. SARS-CoV-2 viability on different surfaces after gaseous ozone treatment: a preliminary evaluation. J Hosp Infect 2021; 110: 33-36.
  25. Yao M., Zhang L., Ma J., Zhou L. On airborne transmission and control of SARS-Cov-2. Sci Total Environ 2020; 731: 139178.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Multifunctional digital ozonizer model LF2V7: 1 - outlet; 2 – time decrease button “2”; 3 – electronic timer; 4 - electrical wire; 5 - nozzle; 6 - outlet tube; 7 – on/off button; 8 - button to increase the time

Download (273KB)

Copyright (c) 2021 Prylutskyi A.S., Kapranov S.V., Tkachenko K.E., Yalovega L.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies