Exosomes and myocardial infarction: scientific and practical interest

Cover Page

Cite item

Full Text

Abstract

A review of the literature on the biological role of exosomes in the pathophysiology of a number of pathological conditions, including damage to the heart muscle in the variant of myocardial infarction (MI), is presented. In the last decade, exosomes have begun to be actively studied; a lot of data have appeared on their nature and role in intercellular transport and signaling both in normal conditions and in pathology. Exosomes are important carriers of biological information, facilitating intercellular communication and participating in the pathophysiology of various cardiovascular diseases. In myocardial infarction, massive cardiomyocyte death triggers a strong inflammatory response, which is a vital process for cardiac damage, repair, and remodeling. A growing body of evidence suggests that exosomes are involved in the inflammatory response and immune regulation after MI.

About the authors

O. V. Khlynova

E.A. Vagner Perm State Medical University

Author for correspondence.
Email: olgakhlynova@mail.ru

MD, PhD, Professor, Corresponding Member of the Russian Аcademy of Sciences, Head of Department of Hospital Therapy and Cardiology

Russian Federation, Perm

R. A. Rodionov

E.A. Vagner Perm State Medical University

Email: olgakhlynova@mail.ru

postgraduate student of Department of Hospital Therapy and Cardiology

Russian Federation, Perm

N. S. Karpunina

E.A. Vagner Perm State Medical University

Email: olgakhlynova@mail.ru

MD, PhD, Аssistant Professor, Professor of Department of Hospital Therapy and Cardiology

Russian Federation, Perm

E. A. Shishkina

E.A. Vagner Perm State Medical University

Email: olgakhlynova@mail.ru

MD, PhD, Аssistant Professor of Department of Hospital Therapy and Cardiology

Russian Federation, Perm

References

  1. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M. et al. Heart Disease and Stroke Statistics-2015 Update A Report From the American Heart Association. Circulation 2015; 131: E29–E322.
  2. Ailawadi S., Wang X., Gu H., Fan G.C. Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta 2015; 1852: 1–11.
  3. Das S., Halushka M.K. Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 2015; 24: 199–206.
  4. Frydrychowicz M., Kolecka-Bednarczyk A., Madejczyk M., Yasar S., Dworacki G. Exosomes – structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol 2015; 81: 2–10.
  5. Sluijter J.P., Verhage V., Deddens J.C., van den Akker F., Doevendans P.A. Microvesicles and exosomes for intracardiac communication. Cardiovasc Res 2014; 102: 302–311.
  6. Vlassov A.V., Magdaleno S., Setterquist R., Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012; 1820: 940–948.
  7. Ostrowski M., Carmo N.B., Krumeich S., Fanget I., Raposo G., Savina A. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12: 19–30.
  8. de Jong O.G., Verhaar M.C., Chen Y., Vader P., Gremmels H., Posthuma G. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1.
  9. Malik Z.A., Kott K.S., Poe A.J., Kuo T., Chen L., Ferrara K.W. et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 2013; 304: H954–965.
  10. Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O. Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.
  11. Peinado H., Aleckovic M., Lavotshkin S., Matei I., Costa-Silva B., Moreno-Bueno G. et al. Melanoma exosomes educate bone marrow progenitor cells toward a prometastatic phenotype through MET. Nat Med 2012; 18: 883–891.
  12. O'Loughlin A.J., Woffindale C.A., Wood M.J. Exosomes and the emerging field of exosomebased gene therapy. Curr Gene Ther 2012; 12: 262–274.
  13. Barile L., Gherghiceanu M., Popescu L.M., Moccetti T., Vassalli G. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol 2012; 2012: 354605.
  14. Manole C.G., Cismasiu V., Gherghiceanu M., Popescu L.M. Experimental acute myocardial infarction: telocytes involvement in neoangiogenesis. J Cell Mol Med 2011; 15: 2284–2296.
  15. Emanueli C., Shearn A.I., Angelini G.D., Sahoo S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol 2015; 71: 24–30.
  16. Kanada M., Bachmann M.H., Hardy J.W., Frimannson D.O., Bronsart L., Wang A. et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proceedings of the National Academy of Sciences of the United States of America 2015; 112: E1433–E42.
  17. Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M. et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 2011; 4: 446–454.
  18. Ong S.G., Lee W.H., Huang M., Dey D., Kodo K., Sanchez-Freire V. et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 2014; 130: S60–S69.
  19. Aurora A.B., Mahmoud A.I., Luo X., Johnson B.A., van Rooij E., Matsuzaki S. et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest 2012; 122: 1222–1232.
  20. van Balkom B.W., de Jong O.G., Smits M., Brummelman J., den Ouden K., de Bree P.M. et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 2013; 121: 3997–4006. S1-15.
  21. Sahoo S., Klychko E., Thorne T., Misener S., Schultz K.M., Millay M. et al. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 2011; 109: 724–728.
  22. Gray W.D., French K.M., Ghosh-Choudhary S., Maxwell J.T., Brown M.E., Platt M.O. et al. Identification of therapeutic covariant microRNA clusters in hypoxiatreated cardiac progenitor cell exosomes using systems biology. Circ Res 2015; 116: 255–263.
  23. Bang C., Batkai S., Dangwal S., Gupta S.K., Foinquinos A., Holzmann A. et al. Cardiac fibroblast-derived microRNA passenger strandenriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124: 2136–2146.
  24. Hergenreider E., Heydt S., Treguer K., Boettger T., Horrevoets A.J., Zeiher A.M. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012; 14: 249–256.
  25. Wang X., Huang W., Liu G., Cai W., Millard R.W., Wang Y. et al. Cardiomyocytes mediate antiangiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 2014; 74: 139–150.
  26. Waldenstrom A., Genneback N., Hellman U., Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 2012; 7: e34653.
  27. Halkein J., Tabruyn S.P., Ricke-Hoch M., Haghikia A., Nguyen N.Q., Scherr M. et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 2013; 123: 2143–2154.
  28. Khan M., Nickoloff E., Abramova T., Johnson J., Verma S.K., Krishnamurthy P. et al. Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and En-hance Cardiac Function Following Myocardial Infarction. Circulation Research 2015; 117: 52–64.
  29. Arslan F., Lai R.C., Smeets M.B., Akeroyd L., Choo A., Aguor E.N. et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 2013; 10: 301–312.
  30. Ibrahim A.G., Cheng K., Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2014; 2: 606–619.
  31. Barile L., Lionetti V., Cervio E., Matteucci M., Gherghiceanu M., Popescu L.M. et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 2014; 103: 530–541.
  32. Vicencio J.M., Yellon D.M., Sivaraman V., Das D., Boi-Doku C., Arjun S. et al. Plasma Exosomes Protect the Myocardium From Ischemia-Reperfusion Injury. Journal of the American College of Cardiology 2015; 65: 1525–1536.
  33. Yu B., Kim H.W., Gong M., Wang J.C., Millard R.W., Wang Y.G. et al. Exosomes secreted from GATA-4 overex-pressing mesenchymal stem cells serve as a reservoir of antiapoptotic microRNAs for cardioprotection. International Journal of Cardiology 2015; 182: 349–360.

Copyright (c) 2021 Khlynova O.V., Rodionov R.A., Karpunina N.S., Shishkina E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies