Oleic, palmitic triglycerides, very low density lipoproteins. Atherosclerosis, arterial atheromatosis and ischemic heart disease pathogenesis

Cover Page

Cite item

Full Text

Abstract

In the clinic and experiment, the basic factor in pathogenesis of hyperlipoproteinemia, atherosclerosis and atheromatosis is disturbance of physicochemical parameters of very low density lipoproteins (VLDLP). They are secreted into the blood flow by hepatocytes in biological reaction of exotrophia, external nutrition, biological function of trophology – nutrition. When there are no genetic disorders, VLDLP parameters are determined mainly by substrate induction, realization of biological reaction of exotrophia. Aphysiological induction of substrate is: a) high content of exogenous palmitic saturated fatty acid and palmitic position forms of triglycerides in the food of Homo sapiens, when a patient uses an excessive amount of meat and little carbohydrates for food. We believe that for primary prevention of ischemic heart disease the following is required: a) as for normalization of biological function of endoecology – to reduce the supply of ligandless palmitic low density lipoproteins in the intima and b) to inhibit atheromatosis of elastic type arteries including coronary artery atheromatosis. To inhibit atherosclerosis, it is necessary to normalize the biological function of nutrition, reduce the amount of meat food, replacing it by fish, while increasing the amount of vegetable food according to parameters of general biology. The basic in prevention of atherosclerosis, atheromatosis and IHD, we suppose, is activation of cognitive biological function. This is positioning of organism in the unity of: a) metabolic reactions in vivo b) exposure of environmental factors and c) social conditions, understanding of the fact that in phylogenesis, the species Homo sapiens was formed as herbivorous species with carnivorous (fish-eating) past in the ocean. If there is no critical understanding of the necessity of optimization of biological nutritional function in patients “meat-eaters”, neither prevention of atherosclerosis and atheromatosis, nor treatment of IHD will be successful. Nothing different in biology or medicine is available.

About the authors

Vladimir N. Titov

National Medical Research Center of Cardiology

Email: vn_titov@mail.ru

Professor, MD, Head of the Laboratory of Clinical Biochemistry lipid metabolism Research

Russian Federation, 121552, Moscow, st. 3rd Cherepkovsky, 15A.

Alevtina P. Schekotova

PSMU them. Academician E.A. Wagner Ministry of Health of Russia

Author for correspondence.
Email: al_shchekotova@mail.ru
ORCID iD: 0000-0002-7802-4796

professor, MD, Head of the Department of Clinical Laboratory Diagnostics

Russian Federation, 26, Petropavlovskay street, Perm, 614000

References

  1. Коткина Т.И., Титов В.Н. Позиционные изомеры триглицеридов в маслах, жирах и апоВ-100-липопротеинах. Пальмитиновый и олеиновый варианты метаболизма жирных кислот – субстратов для наработки энергии. Клиническая лаборатория диагностика 2014; 1: 22–43.
  2. Медкова И.Л. Современное представление о вегетарианстве с позиций метаболической концепции ассимиляции пищи. Вопросы питания 2009; 78 (3): 4–10.
  3. Рожкова Т.А., Ариповский А.В., Яровая Е.Б., Каминная В.И., Кухарчук В.В., Титов В.Н. Индивидуальные жирные кислоты плазмы крови: биологическая роль субстратов, параметры количества и качества, диагностика атеросклероза и атероматоза. Клиническая лабораторная диагностика 2017; 62 (11): 655–665.
  4. Сажина Н.Н., Евтеева Н.М., Титов В.Н. Константы скорости реакций взаимодействия озона с пальмитиновой, олеиновой и другими жирными кислотами. Роль озонолиза в метаболизме жирных кислот. Клиническая лабораторная диагностика 2018; 63 (8): 460–465.
  5. Титов В.Н. Клиническая биохимия. Курс лекций. М. Инфра-М 2017; 440.
  6. Титов В.Н. Структура апоА-I липопротеинов высокой плотности. Биохимия 1997; 62 (1): 3–19.
  7. Титов В.Н., Рожкова Т.А., Каминная В.И. Роль избыточного количества мясной пищи в патогенезе атеросклероза и атероматоза у животных и человека. Журнал медико-биоло гических исследований 2018; 6 (2): 174–187.
  8. Титов В.Н., Рожкова Т.А., Каминная В.И., Алчинова И.Б. Методы клинической биохимии в объективной оценке степени переедания травоядным в филогенезе Homo sapiens (пациентов) плотоядной, мясной пищи. Клиническая лабораторная диагностика 2018; 63 (6): 324–332.
  9. Томпсон Г.Р. Руководство по гиперлипидемии. MSD. Reprited 1991; 225.
  10. Al-Sulaiti H., Diboun I., Banu S. Triglyceride profiling in adipose tissues from obese insulin sensitive, insulin resistant and type 2 diabetes mellitus individuals. J Transl Med 2018; 16 (1): 175–187.
  11. Bennett M.R., Sinha S., Owens G.K. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118 (4): 692–702.
  12. Chaabane C., Coen M., Bochaton-Piallat M.L. Smooth muscle cell phenotypic switch: implications for foam cell formation. Curr Opin Lipidol 2014; 25 (5): 374–379.
  13. Chang M.Y., Chan C.K., Braun K.R. Monocyte-to-macrophage differentiation: synthesis and secretion of a complex extracellular matrix. J Biol Chem 2012; 287 (17): 14122–14135.
  14. Chaudhry R., Viljoen A., Wierzbicki A.S. Pharmacological treatment options for severe hypertriglyceridemia and familial chylomicro nemia syndrome. Expert Rev Clin Pharmacol 2018; 11(6): 589–598.
  15. Chistiakov D.A., Orekhov A.N., Bobry shev Y.V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214(1): 33–50.
  16. Feng Y., Yao Z., Klionsky D.J. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 2015; 25(6): 354–363.
  17. Fujii S. Atherosclerosis, chronic inflammation, and thrombosis: in search of the missing link in laboratory medicine. Rinsho Byori 2015; 63(5): 605–611.
  18. Gimbrone M.A., Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620–636.
  19. Guha M., Gursky O. Effects of oxidation on structural stability and remodeling of human very low density lipoprotein. Biochemistry 2010; 49(44): 9584–9593.
  20. Hjermann I., Holme I., Velve Byre K., Leren P. Effect of diet and smoking intervention on the incidence of coronary heart disease. Report from the Oslo Study Group of a randomized trial in healthy men. Lancet 1981; II: 1303–1310.
  21. Kalinin A., Krasheninnikov V., Sviridov A., Titov V. Chemometry of clinically important fatty acids in the blood serum using near infared spectrometer. Am J Chem Appl 2018; 5(3): 45–50.
  22. Koopenol-Raab M., Nita-Lazar A. A methodology for comprehensive analysis of toll-like receptor signaling in macrophages. Methods Mol Biol 2017; 1636: 301–312.
  23. Lorentzen K.A., Chai S., Chen H. Mechanisms involved in extracellular matrix remodeling and arterial stiffness induced by hyaluronan accumulation. Atherosclerosis 2016; 244: 195–203.
  24. Moreira D.M., da Silva R.L., Vieira J.L. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. Am J Cardiovasc Drugs 2015; 15(1): 1–11.
  25. Nakajima K., Tanaka A. Atherogenic postprandial remnant lipoproteins; VLDL remnants as a causal factor in atherosclerosis. Clin Chim Acta 2018; 478: 200–215.
  26. Ridker P.M. Closing the loop on inflammation and atherothrombosis: why perform the CIRT and CANTOS trials? Trans Am Clin Climatol Assoc 2013; 124: 174–190.
  27. Rocha N.A., East C., Zhang J., McCullough P.A. ApoCIII as a cardiovascular risk factor and modulation by the novel lipid-lowering agent volanesorsen. Curr Atheroscler Rep 2017; 19(12): 62–69.
  28. Sacks F.M. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol 2015; 26(1): 56–63.
  29. Shao B.I., Han B.Z., Zeng Y.X. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 2016; 37(2): 150–156.
  30. Shibata N., Glass C.K. Macrophages, oxysterols and atherosclerosis. Circ J 2010; 74(10): 2045–2051.
  31. Singh R., Devi S., Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes. Metab Res Rev 2015; 31(2): 113–126.
  32. Torres N., Guevara-Cruz M., Velázquez-Villegas L.A., Tovar A.R. Nutrition and atherosclerosis. Arch Med Res 2015; 46(5): 408–426.
  33. Yang Ch., Cu Z.W., Valentinova N. Human very low density lipoprotein structure: Interaction of the C apolipoproteins with apolipoprotein B-100. J Lipid Res 34(8): 1311–1321.
  34. Young S.G., Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev 2013; 27(5): 459–484.
  35. Young S.G., Davies B.S., Voss C.V. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res 2011; 52(11): 1869–1984.
  36. Yu Q., Li Y., Wang Y. C-reactive protein levels are associated with the progression of atherosclerotic lesions in rabbits. Histol Histopathol 2012; 27(4): 529–535.
  37. Yu Y., Kuang Y.K., Lei D. Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography1. J Lipid Res 2016; 57(10): 1879–1888.
  38. Zeller I., Srivastava S. Macrophage functions in atherosclerosis. Circ Res 2014; 115(12): e83–e85.
  39. Zhang L., Song J., Cavigiolo G. Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J Lipid Res 2011; 52(1): 175–184.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Titov V.N., Schekotova A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies