Features of amniotic fluid microbiota in full-term pregnancy

Cover Page

Cite item

Full Text

Abstract

Objective. To study the microbial landscape of amniotic fluid in physiological process of full-term pregnancy. Recently, after publication of a number of studies regarding human microbiota (The Human Microbiome Project – HMP), there occurred a change in paradigm on absolute sterility of fetal membranes and amniotic fluid in physiologically developing pregnancy.

Materials and methods. At the City Clinical Hospital № 1 named after N.I. Pirogov, during elective cesarean section of 19 pregnant women (at the terms of 37–41 weeks) with intact fetal membranes, an amniotic fluid of the following microorganisms was taken by means of PCR-PB: Lactobacillus spp., Enterobacteriaceae, Streptococcus spp., Staphylococcus spp., Gardnerella vaginalis / Prevotella bivia / Porphyromonas spp., Eubacterium spp., Sneathia spp. / Leptotrihia spp. / Fusobacterium spp., Megasphaera spp. / Veillonella spp. / Dialister spp., Lachnobacterium spp. / Clostridium spp., Mobiluncus spp. / Corynebacterium spp., Peptostreptococcus spp., Atopobium vaginae, Mycoplasma hominis, Ureaplasma (urealyticum + parvum), Candida spp., Mycoplasma henitalium.

Results. The general bacterial mass (GBM) of amniotic fluid in intact fetal membranes is 103,02 Ge/copies, in 47.4 % of cases the amniotic fluid is sterile. Microbiota is most often presented by Enterobacteriaceae spp. – 37 %, the share of the rest, identified bacteria is 28 %, the share of “unknown” is 35 %.

Conclusions. In case of physiologically developing pregnancy and intact fetal membranes, the general bacterial mass is low (GBM = 103,02 ± 345 Ge/ml). In the intact amniotic sac the most typical microorganisms living in amniotic fluid are Enterobacteriaceae spp. (37 %), the rest are presented in single instances. The presence of the representatives of anaerobic vaginal dysbiosis as well as lactobacilli is not typical for the intact fetal membranes.

About the authors

M. A. Kaganova

Samara State Medical University

Author for correspondence.
Email: mkaganova@yandex.ru

Candidate of Medical Sciences, Associate Professor, Department of Obstetrics and Gynecology

Russian Federation

N. V. Spiridonova

Samara State Medical University

Email: mkaganova@yandex.ru

MD, PhD, Professor, Head of Department of Obstetrics and Gynecology

Russian Federation

L. K. Medvedchikova-Ardiya

Samara Regional Clinical Hospital named after V.D. Seredavin

Email: mkaganova@yandex.ru

obstetrician-gynecologist

Russian Federation

References

  1. Biasucci G., Rubini M., Riboni S. et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev 2010; 86 1): 13–15.
  2. Dominguez-Bello M.G., Costello E.K., Contreras M. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107 26): 11971–11975.
  3. Zhu L., Luo F., Hu W. et al. Bacterial communities in the womb during healthy pregnancy. Front Microbiol 2018; 9: 2163.
  4. Doyle R.M., Harris K., Kamiza S. et al. Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes. PLoS One 2017; 12 7): e0180167.
  5. Parnell L.A., Briggs C.M., Cao B. et al. Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles. Sci Rep 2017; 7 1): 11200.
  6. Gomez-Arango L.F., Barrett H.L., McIntyre H.D. et al. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci Rep 2017; 7 1): 2860.
  7. Leon L.J., Doyle R., Diez-Benavente E. et al. Enrichment of clinically relevant organisms in spontaneous preterm delivered placenta and reagent contamination across all clinical groups in a large UK pregnancy cohort. Appl Environ Microbiol 2018; 84 14).
  8. Prince A.L., Chu D.M., Seferovic M.D. et al. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome. Cold Spring Harb Perspect Med 2015; 5 6).
  9. Kaganova M.A., Spiridonova N.V., Nesterenko S.A., Denisova N.G., Syresina S.V., Artyuh Yu.A., Guryianova O.Yu. Analysis of the features of the labor and perinatal outcomes in isolated oligohydramnios. Aspirantskiy Vestnik Povolzhiya. 2019; 5–6: 39–43 in Russian).
  10. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6: 237–265.
  11. Rehbinder E.M., Lødrup K.C., Cath rine A.S., Angell I.L., Landrø L., Hilde K., Gaustad P., Rudi K. Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am J Obstet Gynecol 2018; 219 3): 289.e1–289.e12.
  12. Lim E.S., Rodriguez C., Holtz L.R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 2018; 6: 87.
  13. Fernandez H., Montuclard B., Guibert M. Does intraamniotic infection in the early phase of the second trimester really exist? Am J Obstet Gynecol 1996; 175: 1077–1078.
  14. Gervasi M.T., Romero R., Bracalente G., Erez O., Dong Z., Hassan S.S., Yeo L., Yoon B.H., Chaiworapongsa T. Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early 32 weeks) preterm delivery. J Perinat Med 2012; 40: 329–343.
  15. Cherouny P.H., Pankuch G.A., Botti J.J. Occult intraamniotic infection at the time of midtrimester genetic amniocentesis: a reassessment. Infect Dis Obstet Gynecol 1994; 2: 136–139.
  16. Han Y.W., Shen T., Chung P., Buhimschi I.A., Buhimschi C.C. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol 2009; 47: 38–47.
  17. Tita A.T., Andrews W.W. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol 2010; 37: 339–354.
  18. Romero R., Chaemsaithong P., Korze niewski S.J., Kusanovic J.P., Docheva N., Martinez-Varea A. et al. Clinical chorioamnionitis at term III: how well do clinical criteria perform in the identification of proven intra-amniotic infection? J Perinat Med. 2016; 44: 23–32.
  19. Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6: 23129.
  20. Dadayeva D.G. Placental microbiota and its role in the development of intra-amniotic infection. Journal of obstetrics and women's diseases 2020; 69 1): 81–86 in Russian).
  21. Kaganova M.A., Spirirdonova N.V. Amniotic fluid collection device. Patent RU 198 317 U1; 2020 in Russian)
  22. Boldyreva M.N., Lipova E.V., Alekseyev L.P., Vitvitskaya Yu.G., Guskova I.A. Characterization of the biota of the urogenital tract in women at the reproductive age by real-time PCR. Zhurnal akusherstva i zhenskikh bolezney. 2009; LVIII 6); 36–42 in Russian).
  23. Sukhikh G.T., Prilepskaya V.N., Trofimov D.Yu., Donnikov A.E., Aylamazyan E.K. i soavt. Application of the real-time polymerase chain reaction method to assess the microbiocenosis of womens’ urogenital tract femoflor test): medical technology. Moscow 2011. 36 in Russian).
  24. Voroshilina E.S., Tumbinskaya L.V., Donnikov A.E., Plotko E.E., Khayutin L.V. Vaginal biocenosis in terms of quantitative polymerase chain reaction: what is the norm? Akusherstvo i ginekologiya 2011; 1: 57–65 in Russian).
  25. Ansbacher R., Boyson W.A., Morris J.A. Sterility of the uterine cavity. Am J Obstet Gynecol 1967; 99: 394–396.
  26. Urushiyama D., Suda W., Ohnishi E., Araki R., Kiyoshima Ch., Kurakazu M., Sanui A., Murata M., Nabeshima K., Yasunaga Sh., Saito Sh., Nomiyama M., Hattori M., Miyamoto Sh., Hata K. Microbiome profle of the amniotic fuid as a predictive biomarker of perinatal outcome. SCIENTIFIC Reports 2017; 7: 12171.
  27. Solt I. The human microbiome and the great obstetrical syndromes: a new frontier in maternal-fetal medicine. Best Pract Res Clin Obstet Gynaecol 2015; 29: 165–175.
  28. Parnell L.A., Briggs C.M., Cao B., Delannoy-Bruno O., Schrieffer A.E., Mysorekar I.U. Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles. Sci Rep 2017; 7: 11200.
  29. Steel J.H., Malatos S., Kennea N., Edwards A.D., Miles L., Duggan P. et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res 2005; 57: 404–411.
  30. Combs C.A., Gravett M., Garite T.J. et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014; 210 2): 125.e1–125.e15.
  31. Combs C.A., Garite T.J., Lapidus J.A. et al. Detection of microbial invasion of the amniotic cavity by analysis of cervicovaginal proteins in women with preterm labor and intact membranes. Am J Obstet Gynecol 2015; 212 4): 482.e1–482.e12.
  32. Collado M.C., Ceranda M., Baüerl Ch., Vento M., Pérez-Martínez G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes. 2012; 3 4): 352–365.
  33. Krieg N.R., Ludwig W., Whitman W., Hedlund B.P., Paster B.J., Staley J.T., Ward N., Brown, D., Parte A. Eds.) Bergey's Manual of Systematic Bacteriology 2010; 925.
  34. Younes J.A., Lievens E., Hummelen R., van der Westen R., Reid G., Petrova M.I. Women and their microbes: the unexpected friendship. Trends Microbiol 2017; 26: 16–32.
  35. Bagga R., Arora P. Genital Micro-organisms in Pregnancy. Front. Public Health 2020; 8: 225.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure: Relative frequency (%) (amount of detected microorganism in relation to laboratory MBP) in amniotic fluid during physiologically ongoing pregnancy

Download (89KB)

Copyright (c) 2021 Kaganova M.A., Spiridonova N.V., Medvedchikova-Ardiya L.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».