Hepсidin regulation of adaptive immune cell functions

Cover Page

Cite item

Full Text

Abstract

The peptide hormone hepcidin is a key regulator of iron metabolism. Primarily synthesized in the liver, it controls the absorption of iron ions by enterocytes and iron export from cells. Hepcidin acts by binding to its principal target, protein ferroportin, inducing its internalization and degradation, thereby blocking the release of iron ions from cells. Changes in the intracellular level of iron ions are critical for immune cell function. The synthesis of hepcidin, and consequently ferroportin, increases during inflammation in response to proinflammatory cytokines and to infectious agents that stimulate toll-like receptors. Lymphocyte proliferation is a key stage in the development of the adaptive immune response, and iron is essential for this process. The review analyzes current understanding of the mechanisms of hepcidin immunoregulatory activity in relation to the adaptive immunity cells. Regulation of the intracellular levels of iron ions by hepcidin affects the activation and proliferation of T- and B-lymphocytes, directs differentiation of effector subpopulations of T-helper lymphocytes and cytotoxic T-lymphocytes, the formation of memory B-cells and antibody production. The relevance of systematizing knowledge about the mechanisms of regulation of iron metabolism and the immunoregulatory activity of hepcidin is determined by the widespread prevalence of iron deficiency conditions and popularity of iron-containing drugs. Understanding the mechanisms of targeted regulation of iron metabolism has profound fundamental and practical significance and opens up new prospects for the treatment of iron deficiency, infectious, oncological and neurodegenerative diseases.

About the authors

E. G. Orlova

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences; Ye.A. Vagner Perm State Medical University

Author for correspondence.
Email: orlova_katy@mail.ru
ORCID iD: 0000-0003-1195-8962

DSc (Biology), Leading Researcher

Russian Federation, Perm; Perm

O. L. Gorbunova

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: orlova_katy@mail.ru
ORCID iD: 0000-0002-7580-6848

PhD (Biology), Researcher

Russian Federation, Perm

N. P. Loginova

Ye.A. Vagner Perm State Medical University

Email: natalitsa@yandex.ru
ORCID iD: 0000-0001-8597-2682

DSc (Medicine), Associate Professor, Head of the Department of Histology, Embryology and Cytology

Russian Federation, Perm

References

  1. Мильто И.В., Суходоло И.В., Прокопьева В.Д., Климентьева Т.К. Молекулярные и клеточные основы метаболизма железа у человека. Биохимия 2016; 81 (6): 549–564. doi: 10.1134/S0006297916060018 / Milto I.V., Suhodolo I.V., Klimenteva T.K., Prokopieva V.D. Molecular and cellular bases of iron metabolism in humans. Biochemistry 2016; 81 (6): 549–564. doi: 10.1134/S0006297916060018 (in Russian).
  2. Сандакова Е.А., Жуковская И.Г. Микронутриентные дефициты при нарушениях менструальной функции у женщин репродуктивного возраста. Пермский медицинский журнал 2021; 38 (6): 59–68. doi: 10.17816/pmj38659-68 / Sandakova E.A., Zhukovskaya I.G. Micronutrient deficiencies in menstrual dysfunction in women of reproductive age. Perm Medical Journal 2021; 38 (6): 59–68. doi: 10.17816/pmj38659-68 (in Russian).
  3. Park C.H., Valore E.V., Waring A.J., Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001; 276: 7806–7810. doi: 10.1074/jbc.M008922200
  4. Nemeth E., Ganz T. The role of hepcidin in iron metabolism. Acta Haematol. 2009; 122 (2–3): 78–86. doi: 10.1159/000243791
  5. Rodrigues P.N., Vázquez-Dorado S., Neves J.V., Wilson J.M. Dual function of fish hepcidin: response to experimental iron overload and bacterial infection in sea bass (Dicentrarchuslabrax). Dev Comp Immunol. 2006; 30: 1156–1167. doi: 10.1016/j.dci.2006.02.005
  6. De Domenico I., Lo E., Ward D.M., Kaplan J. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci. 2009; 106: 3800–3805. doi: 10.1073/pnas.0900453106
  7. Ramey G., Deschemin J.C., Durel B., Canonne-Hergaux F., Nicolas G., Vaulont S. Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 2009; 95: 501–504. doi: 10.3324/haematol.2009.014399
  8. Sebastiani G., Wilkinson N., Pantopoulos K. Pharmacological targeting of the hepcidin/ferro¬portin axis. Front Pharmacol.2016; 7: 160. doi: 10.3389/fphar.2016.00160
  9. Haschka D., Petzer V., Kocher F., Tschurtschenthaler C., Schaefer B., Seifert M., Sopper S., Sonnweber T., Feistritzer C., Arvedson T. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. J Clin Investig. 2019; 4: e98867. doi: 10.1172/jci.insight.98867
  10. Hentze M.W., Hentze M.W., Muckenthaler M.U., Galy B., Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010; 142: 24–38. doi: 10.1016/j.cell.2010.06.028
  11. Щербакова А.С., Кочетковa С.Н., Козловa М.В. Как гистондеацетилаза 3 контролирует экспрессию гепсидина и репликацию вируса гепатита С. Молекулярная биология 2023; 57: 427–439. doi: 10.31857/S0026898423030096 / Shcherbakova A.S., Kochetkova S.N., Kozlova M.V. How does histone deacetylase 3 control hepcidin expression and hepatitis C virus replication. Molekulyarnaya biologiya 2023; 57: 427–439. doi: 10.31857/S0026898423030096 (in Russian).
  12. Ramos E., Kautz L., Rodriguez R., Hansen M., Gabayan V., Ginzburg Y., Roth M.P., Nemeth E., Ganz T. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology 2011; 53: 1333–1341. doi: 10.1002/hep.24178
  13. Fleming R.E., Sly W.S. Hepcidin: a putative iron regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic diseases. Proc Natl AcadSci USA 2001; 98: 8160–8162. doi: 10.1073/pnas.161296298
  14. Zhang X., Rovin B.H. Beyond anemia: hepcidin, monocytes and inflammation. Biol Chem. 2013; 394 (2): 231–238. doi: 10.1515/hsz-2012-0217
  15. Pietrangelo A. Hereditary hemochromatosis – a new look at an old disease. N Engl J Med. 2004; 350: 2383–2397. doi: 10.1056/NEJMra031573
  16. Peyssonnaux C., Zinkernagel A.S., Datta V., Lauth X., Johnson R.S., Nizet V. TLR4-depen-dent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006; 107: 3727–32. doi: 10.1182/blood-2005-06-2259
  17. Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B.K., Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004; 113: 1271–6. doi: 10.1172/JCI20945
  18. Theur I., Theur M., Seifert M., Mair S., Nairz M., Rumpold H., Zoller H., Bellmann-Weiler R., Niederegger H., Talasz H., Weiss G. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood. 2008; 111: 2392–9. doi: 10.1182/blood-2007-05-090019
  19. Armitage A., Pinches R., Eddowes L., Newbold C., Drakesmith H. Plasmodium falciparum infected eyrthroctyes induce mRNA synthesis by peripheral blood mononuclear cells. Br J Haematol. 2009; 147: 769–71. doi: 10.1111/j.1365-2141.2009.07880.x
  20. Pinto J.P., Dias V., Zoller H., Porto G., Carmo H., Carvalho F., de Sousa M. Hepcidin messenger RNA expression in human lymphocytes. Immunology 2010; 130 (2): 217–30. doi: 10.1111/j.1365-2567.2009.03226.x
  21. Смирнов О.А. Железо-регуляторный гормон печени гепцидин и его место в системе врожденного иммунитета. Российский журнал гастроэнтерологии, гепатологии, колопроктологии 2010; 20: 10–15. / Smirnov O.A. Iron-regulatory liver hormone hepcidin and its place in the system of congenital immunity. Russian Journal of Gastroenterology, Hepatology, Coloproctology 2010; 20 (5): 10–15 (in Russian)
  22. Konijn A.M., Hershko C. Ferritin synthesis in inflammation. I. Pathogenesis of impaired iron release. Br J Haematol. 1977; 37: 7–16. doi: 10.1111/j.1365-2141.1977.tb08806.x
  23. Armitage A.E., Eddowes L.A., Gileadi U., Cole S., Spottiswoode N., Selvakumar T.A., Ho L., Townsend A.R.M., Drakesmith H. Hepcidin regulation by innate immune and infectious stimuli. Blood. 2011; 118: 4129–4139. doi: 10.1182/blood-2011-04-351957
  24. Abreu R., Quinn F., Giri P.K. Role of the hepcidin-ferroportin axis in pathogen-mediated intracellular iron sequestration in human phagocytic cells. Blood Adv. 2018; 2: 1089–1100. doi: 10.1182/bloodadvances
  25. Hortová-Kohoutková M., Skotáková M., Onyango I.G., Slezáková M., Panovský R., Opatřil L., Slanina P., De Zuani M., Mrkva O., Andrejčinová I., Lázničková P., Dvončová M., Mýtniková A., Ostland V., Šitina M., Stokin G.B., Šrámek V., Vlková M., Helán M., Frič J. Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation. Front Immunol. 2023; 14: 1110540. doi: 10.3389/fimmu.2023.1110540
  26. Pagani A., Nai A., Corna G., Bosurgi L., Rovere-Querini P., Camaschella C., Silvestri L. Low hepcidin accounts for the proinflammatory status associated with iron deficiency. Blood. 2011; 118: 736–746. doi: 10.1182/blood-2011-02-337212
  27. Song S.N., Iwahashi M., Tomosugi N., Uno K., Yamana J., Yamana S., Isobe T., Ito H., Kawabata H., Yoshizaki K. Comparative evaluation of the effects of treatment with tocilizumab and TNF-α inhibitors on serum hepcidin, anemia response and disease activity in rheumatoid arthritis patients. Arthritis Res Ther.2013; 15 (5): R141. doi: 10.1186/ar4323
  28. Nazif H.K., El-Shaheed A.A., El-Shamy K.A., Mohsen M.A., Fadl N.N., Moustafa R.S. Study of serum hepcidin as a potential mediator of the disrupted iron metabolism in obese adolescents. Int J Health Sci (Qassim).2015; 9 (2): 172–178. doi: 10.1056/NEJMra031573
  29. Liu Q., Li J., Zong Q., Duan Z., Liu F., Duan W., Ruan M., Zhang H., Liu Y., Zhou Q., Wang Q. Interferon-induced polarization of M1 macrophages mediates antiviral activity against the hepatitis B virus via the hepcidin-ferroportin axis. Int Immunopharmacol. 2024; 134: 112219. doi: 10.1016/j.intimp.2024.112219
  30. Arezes J., Jung G., Gabayan V., Valore E., Ruchala P., Gulig P.A., Ganz T., Nemeth E., Bulut Y. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe.2015; 17 (1): 47–57. doi: 10.1016/j.chom.2014.12.001
  31. Murray M.J., Murray A.B., Murray M.B., Murray C.J. The adverse effect of iron repletion on the course of certain infections. Br Med J. 1978; 2: 1113–5.doi: 10.1136/bmj.2.6145.1113
  32. Charlebois E., Pantopoulos K. Iron overload inhibits BMP/SMAD and IL-6/STAT3 signaling to hepcidin in cultured hepatocytes. PLoS One.2021; 16 (6): e0253475. doi: 10.1371/journal.pone.0253475
  33. Rishi G., Subramaniam V.N. Signaling pathways regulating hepcidin. Vitam Horm. 2019; 110: 47–70. doi: 10.1016/bs.vh.2019.01.003
  34. Sakamori R., Takehara T., Tatsumi T., Shigekawa M., Hikita H., Hiramatsu N., KantoT., Hayashi N. STAT3 signaling within hepatocytes is required for anemia of inflammation in vivo. J Gastroenterology.2010; 45 (2): 244–248.doi: 10.1007/s00535-009-0159-y
  35. Falzacappa V., Casanovas G., Hentze M.B., Muckenthaler M.U. A bone morphogenetic protein (BMP) -responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med. 2008; 86, 531–540. doi: 10.1007/s00109-008-0313-7
  36. Wrighting D.M., Andrews N.C. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006; 108 (9): 3204–3209. doi: 10.1182/blood-2006-06-027631
  37. Massague J., Seoane J. Wotton D SMAD transcription factors. Genes Dev. 2005; 19 (23): 2783–2810. doi: 10.1101/gad.1350705
  38. Babitt J.L., Huang F.W., Xia Y., Sidis Y., Andrews N.C., Lin H.Y. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. The J of Clin Investigation. 2007; 117 (7): 1933–1939.doi: 10.1172/JCI31342
  39. Lee P., Peng H., Gelbart T., Wang L., Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Nat Acad of Sciences of the USA. 2005; 102 (6): 1906–1910. doi: 10.1073/pnas.0409808102
  40. Smith C.L., Arvedson T.L., Cooke K.S., Dickmann L.J., Forte C., Li H., Merriam K.L., Perry V.K., Tran L., Rottman J.B., Maxwell J.R. IL-22 regulates iron availability in vivo through the induction of hepcidin. J of Immunol 2013; 191 (4): 1845–1855. doi: 10.4049/jimmunol.1202716
  41. Ryan J.D., Altamura S., Devitt E., Mullins S., Lawless M.W., Muckenthaler M.U., Crowe J. Pegylated interferon-alpha induced hypoferremia is associated with the immediate response to treatment in hepatitis C. Hepatology.2012; 56 (2): 492–500.doi: 10.1002/hep.25666
  42. Peyssonnaux C., Nizet V., Johnson R.S. Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle.2008; 7 (1): 28–32. doi: 10.4161/cc.7.1.5145
  43. Liu Q., Davidoff O., Niss K., Haase V.H. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J of ClinInvestig. 2012; 122 (12): 4635–4644. doi: 10.1172/JCI63924
  44. Mastrogiannaki M., Matak P., Mathieu J.R., Delga S., Mayeux P., Vaulont S., Peyssonnaux C. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 2012; 97 (6): 827–834. doi: 10.3324/haematol.2011.056119
  45. Casanovas G., Mleczko-Sanecka K., Altamura S., Hentze M.W., Muckenthaler M.U. Bone morphogenetic protein (BMP) -responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD. J of Molec Med.2009; 87 (5): 471–480. doi: 10.1007/s00109-009-0447-2
  46. Babitt J.L., Huang.FW., Wrighting D.M., Xia Y., Sidis Y., Samad T.A., Campagna J.A., Chung R.T., Schneyer A.L., Woolf C.J., Andrews N.C., Lin H.Y. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nature Genetics. 2006; 38 (5): 531–539. doi: 10.1038/ng1777
  47. Vecchi C., Montosi G., Zang K., Lamberti I., Duncan S.A., Kaufman R.J., Pietrangelo A. ER stress controls iron metabolism through induction of hepcidin. Science 2009; 325: 877–880. doi: 10.1126/science.1176639
  48. Vecchi C., Montosi G., Garuti C., Corradini E., Sabelli M., Canali S., Pietrangelo A. Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology 2014; 146 (4): 1060–1069. doi: 10.1053/j.gastro.2013.12.016
  49. Mirciov C.S.G., Wilkins S.J., Anderson G.J., Frazer D.M. Food deprivation increases hepatic hepcidin expression and can overcome the effect of Hfe deletion in male mice. FASEB J. 2018; 25: fj201701497RR.doi: 10.1096/fj.201701497RR
  50. Latour C., Wlodarczyk M.F., Jung G., Gineste A., Blanchard N., Ganz T., Roth M-P., Coppin H., Kautz L. Erythroferrone contributes to hepcidin repression in a mouse model of malarial anemia. Haematologica 2017; 102 (1): 60–68. doi: 10.3324/haematol.2016.150227
  51. Bacchetta J., Zaritsky J.J., Sea J.L., Chun R.F., Lisse T.S., ZavalaK., Nayak A., Wesseling-Perry K., Westerman M., Hollis B.W., Salusky I.B., Hewison M. Suppression of iron-regulatory hepcidin by vitamin D. J Am SocNephrol.2014; 25 (3): 564–572. doi: 10.1681/ASN.2013040355
  52. Goodnough J.B., Ramos E., Nemeth E., Ganz T. Inhibition of hepcidin transcription by growth factors. Hepatology 2012; 56 (1): 291–299.doi: 10.1002/hep.25615
  53. Zhou Z., Wu J., Yang Y., Gao P., Wang L., Wu Z. Hepcidin as a prognostic biomarker in clear cell renal cell carcinoma. Am J Cancer Res. 2022; 12 (9): 4120–4139. PMCID: PMC9548002
  54. Weizer-Stern O., Adamsky K., Margalit O., Ashur-Fabian O., Givol D., Amariglio N., Rechavi G. Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53. Br J Haematol.2007; 138 (2): 253–262. doi: 10.1111/j.1365-2141.2007.06638.x
  55. Fan Y., Liu B., Chen F., Song Z., Han B., Meng Y., Hou J., Cao P., Chang Y., Tan K. Hepcidin upregulation in lung cancer: a potential therapeutic target associated with immune infiltration. Front Immunol.2021; 12: 612144. doi: 10.3389/fimmu.2021.612144
  56. Heath J.L., Weiss J.M., Lavau C.P., Wechsler D.S. Iron deprivation in cancer–potential therapeutic implications. Nutrient. 2013; 5: 2836–59. doi: 10.3390/nu5082836
  57. Sun P., Zhou Y., Xu S., Wang X., Li X., Li H., Lin Z., Huang F., Zhu L., Zhu Y. Elevated first-trimester hepcidin level is associated with reduced risk of iron deficiency anemia in late pregnancy: a prospective cohort study. Front Nutr. 2023; 10: 1147114. doi: 10.3389/fnut.2023
  58. Левина А.А., Казюкова Т.В., Цветаева Н.В., Сергеева А.И., Мамукова Ю.И., Романова Е.А. Гепсидин как регулятор гомеоста зажелеза. Педиатрия 2008; 87 (1): 67–74. / Levina A.A., Kazyukova T.V., Tsvetaeva N.V., Sergeeva A.I., Mamukova Y.I., Romanova Y.A. Hepcidin as a regulator of iron homeostasis. Pediatriya 2008; 87 (1): 67–74 (in Russian).
  59. Toldi G., Stenczer B., Molvarec A., Takáts Z., Beko G., Rigó J.J., Vásárhelyi B. Hepcidin concentrations and iron homeostasis in preeclampsia. Clin. Chem. Lab. Med. 2010; 48 (10): 1423–6. doi: 10.1515/CCLM.2010.290.
  60. Jiang Y., Li C., Wu Q., An P., Huang L., Wang J., ChenX., ZhangF., Ma L., Liu S., He H., Xie S., Sun Y., Liu H., Zhan Y., Tao Y., Liu Z., Sun X., Hu Y., Wang Q., Ye D., Zhang J., Zou S., Wang Y., Wei G., Liu Y., Shi Y., Chin Y.E., Hao Y., Wang F., Zhang X. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019; 10 (1): 2935. doi: 10.1038/s41467-019-11002-5.
  61. Frost J.N., Tan T.K., Abbas M., Wideman S.K., Bonadonna M., Stoffel N.U., Wray K., Kronsteiner B., Smits G., Campagna D.R., Duarte T.L., Lopes J.M., Shah A., Armitage A.E., Arezes J., Lim P.J., Preston A.E., Ahern D., Teh M., Naylor C., Salio M., Gileadi U., Andrews S.C., Dunachie S.J., Zimmermann M.B., van der Klis F.R.M., Cerundolo V., Bannard O., Draper S.J., Townsend A.R.M., Galy B., Fleming M.D., Lewis M.C., Drakesmith H.Hepcidin-mediated hypoferremia disrupts immune responses to vaccination and infection. Med. 2021; 2 (2): 164–179.e12. doi: 10.1016/j.medj.2020.10.004
  62. Frost J.N., Drakesmith H. Iron and the immune system. Nat Rev Immunol. 2025; doi: 10.1038/s41577-025-01193-y
  63. Stoffel N.U., Drakesmith H. Effects of iron status on adaptive immunity and vaccine efficacy: a review. AdvNutr. 2024; (6): 100238. doi: 10.1016/j.advnut.2024.100238
  64. Jabara H.H., Boyden S.E., Chou J., Ramesh N., Massaad M.J., Benson H., Bainter W., Fraulino D., Rahimov F., Sieff C., Liu Z-J., Alshemmari S.H., Al-Ramadi B.K., Al-Dhekri H., Arnaout R., Abu-Shukair M., Vatsayan A., Silver E., Ahuja S., Davies E.G., Sola-Visner M., Ohsumi T.K., Andrews N.C., Notarangelo L.D., Fleming M.D., Al-Herz W., Kunkel L.M, Geha R.S. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016; 48 (1): 74–78. doi: 10.1038/ng.3465
  65. Kuvibidila S., Dardenne M., Savino W., Lepault F. Influence of iron-deficiency anemia on selected thymus functions in mice: thymulin biological activity, T-cell subsets, and thymocyte proliferation. Am J ClinNutr. 1990; 51 (2): 228–32. doi: 10.1093/ajcn/51.2.228
  66. Teh M.R., Frost J.N., Armitage A.E. Drakesmith H. Analysis of iron and iron-interacting protein dynamics during t-cellactivation. Front Immunol. 2021; 12: 714613. doi: 10.3389/fimmu.2021.714613
  67. Phan A.T., Goldrath A.W., Glass C.K. Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity. 2017; 46 (5): 714–729. doi: 10.1016/j.immuni.2017.04.016
  68. Klose R.J., Kallin E.M., Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006; 7 (9): 715–727. doi: 10.1038/nrg1945
  69. Duarte-Silva E., Meuth S.G. Peixoto C.A. The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Front Immunol. 2023; 14: 1137635. doi: 10.3389/fimmu.2023.1137635
  70. Yarosz E.L., Ye C., Kumar A., Black C., Choi E.K., Seo Y.A., Chang C.H. Cutting edge: activation-induced iron flux controls cd4 t cell proliferation by promoting proper il-2r signaling and mitochondrial function. J Immunol.2020; 204 (7): 1708–1713. doi: 10.4049/jimmunol.1901399
  71. Pourcelot E., Lénon M., Mobilia N., Cahn J.Y., Arnaud J., Fanchon E., Moulis J.M., Mossuz P. Iron for proliferation of cell lines and hematopoietic progenitors: Nailing down the intracellular functional iron concentration. Biochim Biophys Acta. 2015; 1853 (7): 1596–605. doi: 10.1016/j.bbamcr.2015.03.009
  72. Motamedi M., Xu L., Elahi S. Correlation of transferrin receptor (CD71) with Ki67 expression on stimulated human and mouse T cells: The kinetics of expression of T cell activation markers. J Immunol Methods. 2016; 437: 43–52. doi: 10.1016/j.jim.2016.08.002
  73. Rossatti P., Redpath G.M.I., Ziegler L. Rapid increase in transferrin receptor recycling promotes adhesion during T cell activation. BMC Biol. 2022; 20: 189. doi: 10.1186/s12915-022-01386-0
  74. Wang Z., Yin W., Zhu L., Li J., Yao Y., Chen F., Sun M., Zhang J., Shen N., Song Y., Chang X. Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production. Immunity 2018; 49 (1): 80–92.e7. doi: 10.1016/j.immuni.2018.05.008
  75. Pfeifhofer-Obermair C., Tymoszuk P., Nairz M., Schroll A., Klais G., Demetz E., Engl S., Brigo N., Weiss G. Regulation of Th1 T cell differentiation by iron via upregulation of T cell immunoglobulin and mucin containing protein-3 (Tim-3). FrontImmunol. 2021; 1856: 12. doi: 10.3389/fimmu.2021.637809.
  76. Nairz M., Haschka D., Demetz E., Weiss G. Iron at the interface of immunity and infection. Front Pharmacol.2014; 5: 152. doi: 10.3389/fphar.2014.00152
  77. Howden A.J.M., Hukelmann J.L., Brenes A., Spinelli L., Sinclair L.V.,Lamond A.I., Cantrell D.A. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. NatImmunol.2019; 20: 1542–1554. doi: 10.1038/s41590-019-0495-x
  78. Kumar A., Ye C., Nkansah A., Decoville T., Fogo G.M., Sajjakulnukit P., Reynolds M.B., Zhang L., Quaye O., SeoY-A., Sanderson T.H., Lyssiotis C.A., Chang C-H. Iron regulates the quiescence of naive CD4 T cells by controlling mitochondria and cellular metabolism. Proc Natl AcadSci USA.2024; 121 (17): e2318420121. doi: 10.1073/pnas.2318420121
  79. Regis G., Bosticardo M., Conti L., Angelis S.D., Boselli D., Tomaino B., Bernabei P., Giovarelli M., Novelli F. Iron regulates T-lymphocyte sensitivity to the IFN-gamma/STAT1 signaling pathway in vitro and in vivo. Blood.2005; 105 (8): 3214–3221. doi: 10.1182/blood-2004-07-2686
  80. Wang W., Green M., Choi J.E., Gijón M., Kennedy P.D., Johnson J.K., Liao P., Lang X., Kryczek I., Sell A., Xia H., Zhou J., Li G., Li J., Li W., Wei S.,Vatan L., Zhang H., Szeliga W., Gu W., Liu R., Lawrence T.S., Lamb C., Tanno Y., Cieslik M., Ston eE., Georgiou G., Chan T.A., Chinnaiyan A., Zou W. CD8 (+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019; 569 (7755): 270–4. doi: 10.1038/s41586-019-1170-y
  81. Li X., Xu F., Karoopongse E., Marcondes A.M., Lee K., Kowdley K.V., Miao C.H., Trobridge G.D., CampbellJ.S., Deeg H.J. Allogeneic transplants, Fas-signaling, and dysregulation of hepcidin. Biol Blood Marrow Transplant. 2013; 19 (8): 1210–1219. doi: 10.1016/j.bbmt.2013.05.012
  82. Huang H., Zuzarte-Luis V., Fragoso G., Calvé A., Hoang T.A., Oliero M., Chabot-Roy G., Mullins-Dansereau V., Lesage S., Santos M.M. Acute invariant NKT cell activation triggers an immune response that drives prominent changes in iron homeostasis. Sci Rep. 2020; 10 (1): 21026. doi: 10.1038/s41598-020-78037-3
  83. Ryan E.K., Clutter C., De Barra C., Jenkins B.J., Shaughnessy S.O., Ryan O.K., McKenna C., Heneghan H.M., Walsh F., Finlay D.K., Sinclair L.V., Jones N., Leung D.T., O'Shea D., Hogan A.E. Iron is critical for mucosal-associated invariant t cell metabolism and effector functions. J Immunol. 2024; 212 (11): 1706–1713. doi: 10.4049/jimmunol.2300649

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).