Clinical and non-hemorrhagic neuroimaging indicators of probable cerebral amyloid angiopathy as a cause of non-traumatic lobar hematomas

Cover Page

Cite item

Full Text

Abstract

Objective. To identify clinical and non-hemorrhagic neuroimaging indicators of probable CAA in patients with acute non-traumatic lobar hematomas. Cerebral amyloid angiopathy (CAA) is a microangiopathy affecting the leptomeningial and cortical vessels of the brain due to the deposition of pathological b-amyloid in them. The most common clinical manifestation of CAA is lobar hematomas (LH) – spontaneous intracerebral hemorrhages localized between the cerebral cortex and basal ganglia. LH can also occur in hypertensive cerebral microangiopathy (hCMA) in patients with arterial hypertension. Since the tactics of managing patients with CAA and hCMA differ, it is important to determine the genesis of LH correctly.

Materials and methods. A comparative analysis of clinical and neuroimaging characteristics of acute non-traumatic hypertension in 32 patients with probable CAA and hCMA was carried out. Along with neurological examination and neuroimaging, all patients underwent a study using the Montreal Cognitive Assessment Scale and the Benson Complex Figure Test to reveal visuospatial impairments. The diagnosis of probable CAA was carried out in accordance with the updated Boston criteria of 2010, the diagnosis of hCMA was based on clinical data, anamnesis and results of neuroimaging of the brain.

Results. Probable CAA was diagnosed in 16 patients, and in all these cases it was combined with hCMA
(1st subgroup). Isolated hCMA as a cause of LH was also observed in 16 patients (2nd subgroup). Patients of subgroup 1 were statistically significantly more likely to have clinically pronounced visual impairments, performed the MoCA subtest and the Benson Complex Figure Test worse, and the overall assessment of their cognitive functions according to Mo SA was lower than in patients of subgroup 2. According to neuroimaging data, in the 1st subgroup of patients, an expansion of perivascular spaces in the semi-oval center and a zero or negative value of the front-occipital gradient were more often detected. The application of the logistic regression method made it possible to integrate potential CAA indicators and create a prognostic model for revealing this pathology in patients with hypertension.

Conclusions. Clinically pronounced disorders of primary and higher visual functions, a negative front-occipital gradient and expansion of perivascular spaces in the semi-oval centers can serve as indicators of probable CAA in patients with acute lobar hematoma. On admission of such patients to the vascular center, it is advisable to include iron-sensitive pulse sequences in the neuroimaging screening protocol to verify the diagnosis of CAA.

About the authors

O. A. Novosadova

Privolzhsky Research Medical University

Author for correspondence.
Email: novosadova_o_a@mail.ru
ORCID iD: 0000-0002-0749-3827

Assistant of the Department of Nervous Diseases

Russian Federation, Nizhny Novgorod

V. N. Grigoryeva

Privolzhsky Research Medical University

Email: novosadova_o_a@mail.ru
ORCID iD: 0000-0002-6256-3429

DSc (Medicine), Head of the Department of Nervous Diseases

Russian Federation, Nizhny Novgorod

P. A. Astanin

N.I. Pirogov Russian National Research Medical University

Email: novosadova_o_a@mail.ru
ORCID iD: 0000-0002-1854-8686

Postgraduate Student, Assistant of the Department of Medical Cybernetics and Informatics named after. S.A. Gasparyan, Data Analyst of Laboratory of Semantic Analysis of Medical Information of the Institute of Digital Medicine Transformation Institute

Russian Federation, Moscow

M. A. Lesnikov

Privolzhsky Research Medical University

Email: novosadova_o_a@mail.ru
ORCID iD: 0000-0002-1495-3174

5th-year student of the Medical Faculty

Russian Federation, Nizhny Novgorod

A. S. Samodurov

Privolzhsky Research Medical University

Email: novosadova_o_a@mail.ru
ORCID iD: 0000-0001-5227-2989

5th-year student of the Medical Faculty

Russian Federation, Nizhny Novgorod

References

  1. Гусев Е.И., Мартынов М.Ю., Щукин И.А., Фидлер М.С., Кольцов И.А. Влияние объема кровоизлияния, перифокального отека и прорыва крови в желудочковую систему на функциональное восстановление по шкале Бартел у больных с геморрагическим инсультом полушарной локализации. Вестник неврологии, психиатрии и нейрохирургии 2019; (11): 3–10. doi: 10.33920/med-01-1910-01 / Gusev E.I., Martynov M.Yu., Shchukin I.A., Fidler M.S., Kol'cov I.A. The influence of the volume of hemorrhage, perifocal edema and blood breakthrough into the ventricular system on functional recovery according to the Barthel scale in patients with hemorrhagic stroke of hemispheric localization. Bulletin of neurology, psychiatry and neurosurgery 2019; (11): 3–10. doi: 10.33920/med-01-1910-01 (in Russian).
  2. Кулеш А.А. Современные подходы к диагностике при внутримозговом кровоизлиянии. Неврология, нейро-психиатрия, психосоматика 2020; 12 (2): 4–11. doi: 10.14412/2074-2711-2020-2-4-11 / Kulesh A.A. Modern ap-proaches to diagnosis of intracerebral hemorrhage. Neurology, neuropsychiatry, psychosomatics 2020; 12 (2): 4–11. doi: 10.14412/2074-2711-2020-2-4-11 (in Russian).
  3. Sharma R., Dearaugo S., Infeld B., O'Sullivan R., Gerraty R.P. Cerebral amyloid angiopathy: Review of clinico-radiological features and mimics. Journal of Medical Imaging and Radiation Oncology 2018; 62 (4): 451–463. doi: 10.1111/1754-9485.12726
  4. Weber S.A., Patel R.K., Lutsep H.L. Cerebral amyloid angiopathy: diagnosis and potential therapies. Expert Review of Neurotherapeutics 2018; 18 (6): 503–513. doi: 10.1080/14737175.2018.1480938
  5. Cannistraro R.J., Meschia J.F. The Clinical Dilemma of Anticoagulation Use in Patients with Cerebral Amyloid Angiopathy and Atrial Fibrillation. Current cardiology reports 2018; 20 (11): 106. doi: 10.1007/s11886-018-1052-1
  6. Кулеш А.А., Горст Н.Х., Кузина Е.В., Дробаха В.Е., Шестаков В.В., Каракулова Ю.В. Амилоидный ангиит и прогрессирующий корковый поверхностный сидероз как агрессивные фенотипы церебральной амилоидной ангиопатии: принципы рационального ведения пациентов. Российский неврологический журнал 2019; 24 (6): 29–38. doi: 10.30629/2658-7947-2019-24-6-29-38 / Kulesh A.A., Gorst N.H., Kuzina E.V., Drobaha V.E., Shestakov V.V., Karakulova Yu.V. Amyloid angiitis and progressive cortical superficial siderosis as aggressive phenotypes of cerebral amyloid angiopathy: principles of rational management. Russian Neurological Journal 2019; 24 (6): 29–38. doi: 10.30629/2658-7947-2019-24-6-29-38 (in Russian).
  7. Chan E., Bonifacio G.B., Harrison C., Banerjee G., Best J.G., Sacks B., Harding N., Mas M.D.R.H., Jäger H.R., Cipolotti L., Werring D.J. Domain-specific neuropsy-chological investigation of CAA with and without intracerebral haemorrhage. Journal of Neurology 2023; 270 (12): 6124–6132. DOI: 10.1007/ s00415-023-11977-8
  8. Teo K.C., Fong S.M., Leung W.C., Leung I.Y., Wong Y.K., Choi O.M., Yam K., Lo R.C.N., Cheung R.T.F., Ho S.L., Tsang A.C.O., Leung G.K.K., Chan K.H., Lau K.K. Location-specific hematoma volume cutoff and clinical outcomes in intracerebral hemorrhage. Stroke 2023; 54 (6): 1548–1557. doi: 10.1161/STROKEAHA.122.041246
  9. Charidimou A., Boulouis G., Frosch M.P., Baron J.C., Pasi M., Albucher J.F., Banerjee G., Carmen Barbato, Bonneville F., Brandner S., Calviere L., Caparros F., Casolla B., Cordonnier C., Delisle M.B., Deramecourt V., Dichgans M., Gokcal E., Herms J., Hernandez-Guillamon M., Jäger H.R., Jaunmuktane Z., Linn J., Martinez-Ramirez S., Martínez-Sáez E., Mawrin C., Montaner J., Moulin S., Olivot J.M., Piazza F., Puy L., Raposo N.,Rodrigues M.A., Roeber S., Romero J.R., Samarasekera N., Schneider J.A., Schreiber S., Schreiber F., Schwall C., Smith C., Szalardy L., Varlet P., Viguier A., Wardlaw J.M., Warren A., Wollenweber F.A., Zedde M., Van Buchem M.A., Gurol M.E., Viswanathan A., Salman R.Al.S., Smith E.E., Werring D.J. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multi-centre, retrospective, MRI–neuropathology diagnostic accuracy study. The Lancet Neurology 2022; 21 (8): 714–725. doi: 10.1016/S1474-4422(22)00208-3
  10. Falcone G.J., Biffi A., Brouwers H.B., An-derson C.D., Battey T.W., Ayres A.M., Vashkevich A., Schwab K., Rost N.S., Goldstein J.N., Viswanathan A., Greenberg S.M., Rosand J. Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA neurology 2013; 70 (8): 988–994. doi: 10.1001/jamaneurol.2013.98
  11. Roh D., Boehme A., Young C., Roth W., Gutierrez J., Flaherty M., Rosand J., Tes-tai F., Woo D., Elkind M.S. Hematoma expansion is more frequent in deep than lobar intracerebral hemorrhage. Neurology 2020; 95 (24): e3386–e3393. doi: 10.1212/WNL.0000000000010990
  12. Das A.S., Gurol M.E. Not all lobar hemorrhages are created equal. Stroke 2020; 51 (12): 3485–3486. doi: 10.1161/STROKEAHA. 120.032404
  13. Onomura H., Shimizu T., Kobayashi R., Suzuki J., Nakai N., Okuda S., Itoa Y. Palinopsia as an initial symptom of cerebral amyloid angiopathy-related inflammation. Eneurologicalsci 2021; 25: 100375. doi: 10.1016/j.ensci.2021.100375
  14. Culhane J.E., Chan K.C., Teylan M.A., Chen Y.C., Mock C., Gauthreaux K., Ku-kull W.A. Factor consistency of neuro-psychological test battery versions in the NACC Uniform Data Set. Alzheimer disease and associated disorders 2020; 34 (2): 175. doi: 10.1097/WAD.0000000000000376
  15. Jiskoot L.C., Russell L.L., Peakman G., Convery R.S., Greaves C.V., Bocchetta M., Poos J.M., Seelaar H., Giannini L.A.A., Van Swieten J.C., Van Minkelen R., Pijnenburg Y.A.L., Rowe J.B., Borroni B., Galimberti D., Masellis M., Tartaglia C., Finger E., Butler C.R., Graff C., Laforce R., Sanchez-Valle R., De Mendonça A., Moreno F., Synofzik M., Vandenberghe R., Ducharme S., le Ber I., Levin J., Otto M., Pasquier F., Santana I., Cash D.M., Thomas D., Rohrer J.D. The Benson Complex Figure Test detects deficits in visuoconstruction and visual memory in symptomatic familial fronto-temporal dementia: A GENFI study. Journal of the Neurological Sciences 2023; 446: 120590. doi: 10.1016/j.jns.2023.120590
  16. Toups K., Hathaway A., Gordon D., Chung H., Raji C., Boyd A., Hill B.D., Hausman-Cohen S., Attarha M., Chwa W.J., Jarrett M., Bredesen D.E. Precision medicine approach to Alzheimer’s disease: Successful pilot project. Journal of Alzheimer's Disease 2022; 1: 1–11. doi: 10.3233/JAD-215707
  17. Charidimou A., Frosch M.P., Salman R.A.S., Baron J., Cordonnier C., Hernan-dez-Guillamon M., Linn J., Raposo N., Rodrigues M., Romero J.R., Schneider J.A., Schreiber S., Smith E.E., van Buchem M.A., Viswanathan A., Wollenweber F.A., Werring D.J., Steven M. Greenberg for the International CAA Association. Advancing diag-nostic criteria for sporadic cerebral amyloid angiopathy: study protocol for a multicenter MRI-pathology validation of Boston criteria v2. 0. International Journal of Stroke 2019; 14 (9): 956–971. doi: 10.1177/1747493019855888
  18. Zhu Y.C., Chabriat H., Godin O., Dufouil C., Rosand J., Greenberg S.M., Smith E.E., Tzourio C., Viswanathan A. Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. Journal of neurology 2012; 259: 530–536. doi: 10.1007/s00415-011-6218-3
  19. Doubal F.N., MacLullich A.M., Ferguson K.J., Dennis M.S., Wardlaw, J.M. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010; 41 (3): 450–454. doi: 10.1161/STROKEAHA.109.564914
  20. Harris C.R., Millman K.J., van Der Walt S.J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N.J., Kern R., Picus M., Hoyer S., van Kerkwijk M.H., Brett M., Haldane A., Del Río J.F., Wiebe M., Peterson P., Gérard-Marchant P., Sheppard K., Reddy T., Weckesser W., Abbasi H., Gohlke C., Oliphant, T.E. Array programming with NumPy. Nature 2020; 585 (7825): 357–362. doi: 10.1038/s41586-020-2649-2
  21. Jung Y.H., Jang H., Park S.B., Choe Y.S., Park Y., Kang S.H., Lee J.M., Kim J.S., Kim J., Kim J.P., Kim H.J., Na D.L., Seo S.W. Strictly Lobar Microbleeds Reflect Amyloid Angiopathy Regardless of Cerebral and Cerebellar Compartments. Stroke 2020; 51 (12): 3600–3607. doi: 10.1161/STROKEAHA.119.028487
  22. Su Y., Fu J., Zhang Y., Xu J., Dong Q., Cheng X. Visuospatial dysfunction is associated with posterior distribution of white matter damage in non-demented cerebral amyloid. European Journal of Neurology 2021; 28 (9): 3113–3120. doi: 10.1111/ene.14993
  23. Francis F., Ballerini L., Wardlaw J.M. Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: A systematic review and meta-analysis. International Journal of Stroke 2019; 14 (4): 359–371. doi: 10.1177/1747493019830321
  24. Phuah C.L., Chen Y., Strain J.F., Yechoor N., Laurido-Soto O.J., Ances B.M., Lee J.M., for the Alzheimer's Disease Neuroimaging Initiative. Association of data-driven white matter hyperintensity spatial signatures with distinct cerebral small vessel disease etiologies. Neurol-ogy 2022; 99 (23): e2535–e2547. doi: 10.1212/WNL.0000000000201186
  25. Charidimou A., Boulouis G., Haley K., Auriel E., van Etten E.S., Fotiadis P., Reijmer Y., Ayres A., Vashkevich A., Dipucchio Z.Y., Schwab K.M., Martinez-Ramirez S., Rosand J., Viswanathan A., Greenberg S.M., Gurol M.E. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2016; 86 (6): 505–511. doi: 10.1212/WNL.0000000000002362

Copyright (c) 2024 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies