Personalized therapy of type 2 diabetes mellitus

Cover Page

Cite item

Full Text

Abstract

Currently, the contribution of genetic factors to the development of type 2 diabetes is becoming more obvious. Despite the available nine classes of hypoglycemic drugs, only 35–40 % of patients achieve an adequate glycemic control. One the reasons may be the genetic heterogeneity of diabetes mellitus. An increasing number of studies indicates that an individual set of gene polymorphisms can determine the therapeutic response to a particular drug and cause the development of undesirable effects. The article presents an overview of a new direction in the diagnosis and treatment of diabetes mellitus – personalized medicine. The pathogenetic mechanisms of the development of the disease, its heterogeneity and the difficulties of choosing the most effective hypoglycemic therapy are described. Data on the pharmacogenetic features of metformin are presented.

About the authors

T. A. Kiseleva

Kazan State Medical University

Author for correspondence.
Email: tattiana@mail.ru
ORCID iD: 0000-0001-8959-093X

Candidate of Medical Sciences, Associate Professor, Department of Endocrinology

Russian Federation, Kazan

F. V. Valeeva

Kazan State Medical University

Email: tattiana@mail.ru
ORCID iD: 0000-0001-6000-8002

MD, PhD, Professor, Head of the Department of Endocrinology

Russian Federation, Kazan

D. R. Islamova

Kazan State Medical University

Email: tattiana@mail.ru
ORCID iD: 0000-0003-3639-6361

Clinical Resident, Department of Endocrinology

Russian Federation, Kazan

References

  1. Mannino G.C., Andreozzi F., Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev. 2019; 35 (3): 3109. doi: 10.1002/dmrr.3109
  2. Imamovic Kadric S., Kulo Cesic A., Dujic T. Pharmacogenetics of new classes of anti-diabetic drugs. Bosn J Basic Med Sci. 2021; 21 (6): 659–671. doi: 10.17305/bjbms.2021.5646
  3. Global report on diabetes. Geneva: World Health Organization, 2018. License: CC BY-NC-SA (in Russian).
  4. Dedov I.I., Shestakova M.V. Personalized therapy for diabetes mellitus: the path from disease to the patient. Terapevticheskii arkhiv 2014; 86 (10): 4–9 (in Russian).
  5. Smushkin G., Vella A. Genetics of type 2 diabetes. Current Opinion in Clinical Nutrition and Metabolic Care 2010; 13 (4): 471–477. DOI: http://dx.doi.org/10.1097/MCO.0b013e32833a558d
  6. Voight B.F., Scott L.J., Steinthorsdottir V., et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010; 42 (7): 579–589. doi: 10.1038/ng.609
  7. Vujkovic M., Keaton J.M., Lynch J.A., et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020; 52 (7): 680–691. doi: 10.1038/s41588-020-0637-y
  8. McCarthy M.I. Painting a new picture of personalised medicine for diabetes. Diabetologia 2017; 60 (5): 793–799. doi: 10.1007/s00125-017-4210-x
  9. Pearson E.R. Type 2 diabetes: a multifaceted disease. Diabetologia 2019; 62 (7): 1107–1112. doi: 10.1007/s00125-019-4909-y
  10. Kononenko I.V., Mayorov A.Yu., Koksharova E.O., Shestakova M.V. Pharmacogenetics of hypoglycemic agents. Diabetes mellitus. 2015; 18 (4): 28–34. doi: 10.14341/DM7681 (in Russian).
  11. Becker M.L., Pearson E.R., Tkáč I. Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol. 2013: 686315. doi: 10.1155/2013/686315
  12. Dawed A.Y., Zhou K., Pearson E.R. Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents. Pharmgenomics Pers Med. 2016; 9: 17–29. doi: 10.2147/PGPM.S84854
  13. Wild H. The economic rationale for adherence in the treatment of type 2 diabetes mellitus. Am J Manag Care. 2012; 18 (3): S43–S48.
  14. Singh S., Usman K., Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes. 2016; 7 (15): 302–315. doi: 10.4239/wjd.v7.i15.302
  15. Yan, Q. Pharmacogenomics in drug discovery and development. Humana Press 2010; 504.
  16. Deenen M.J., Cats A., Beijnen J.H., Schellens J.H. Part 1: background, methodology, and clinical adoption of pharmacogenetics. Oncologist 2011; 16 (6): 811–819. doi: 10.1634/theoncologist.2010-0258
  17. Pernicova I., Korbonits M. Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014; 10 (3): 143–156. doi: 10.1038/nrendo.2013.256
  18. Miller R.A., Chu Q., Xie J., Foretz M., Viol-let B., Birnbaum M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013; 494 (7436): 256–260. doi: 10.1038/nature11808
  19. Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012; 122 (6): 253–270. doi: 10.1042/CS20110386
  20. Gong L., Goswami S., Giacomini K.M., Altman R.B., Klein T.E. Metformin path-ways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012; 22 (11): 820–827. doi: 10.1097/FPC.0b013e3283559b22
  21. Madiraju A.K., Erion D.M., Rahimi Y. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014; 510 (7506): 542–546. doi: 10.1038/nature13270
  22. GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group; Wellcome Trust Case Control Consortium 2, Zhou K., et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011; 43 (2): 117–120. doi: 10.1038/ng.735
  23. DeGorter M.K., Xia C.Q., Yang J.J., Kim R.B. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol. 2012; 52: 249–273. doi: 10.1146/annurev-pharmtox-010611-134529
  24. Umamaheswaran G., Praveen R.G., Damodaran S.E., Das A.K., Adithan C. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients. Clin Exp Med. 2015; 15 (4): 511–517. doi: 10.1007/s10238-014-0322-564
  25. Dujic T., Zhou K., Donnelly L.A., Tavendale R., Palmer C.N., Pearson E.R. Association of Organic Cation Transporter 1 With Intolerance to Metformin in Type 2 Diabetes: A GoDARTS Study. Diabetes. 2015; 64 (5): 1786–1793. doi: 10.2337/db14-1388

Copyright (c) 2023 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies