Effect of peptides of trophoblastic Β1 glycoprotein on peripheral and local T-regulatory lymphocytes level in Wistar rats with allogeneous bone marrow cell transplantation

Cover Page

Cite item

Full Text

Abstract

Objective. The range of peptide drugs is expanding, but no drug with immunosuppressive activity has yet been found. Considering the fact that the trophoblastic β1-glycoprotein (PSG) is a fetoplacental protein with immunosuppressive activity, short peptide fragments of this protein were studied in the formation of an immune response in a situation of allogeneic cell transplantation. To study the effect of PSG peptides (YECE, YQCE, YVCS, and YACS) on the levels of peripheral and local T-regulatory cells (Treg) during the formation of an immune response to the introduction of allogeneic bone marrow cells (BM) in a dynamic experiment on Wistar rats.

Materials and methods. We used an original host-versus-graft model in male Wistar rats without preconditioning of recipients. Animals were injected with PSG peptide fragment composition against a background of allogeneic intraperitoneal transplantation of BM cells in a dynamic experiment, in which the following parameters were evaluated: the level of peripheral "true" Tregs (CD4+CD25+FOXP3+), CD4+CD25-FOXP3+ cells, and FOXP3 expression in mesenteric lymph nodes. Material was collected on days 3 and 21 of the experiment.

Results. PSG peptide administration against a background of allogeneic BM cells was found to reduce the absolute and relative amount of Treg in the peripheral blood of rats on days 3 and 21 of the experiment. PSG peptides against the background of the introduction of allogeneic BM cells reduced the absolute and relative amounts of CD4+CD25-FOXP3+ cells on the day 3 of the experiment. The introduction of PSG peptides against the background of the introduction of BM cells resulted in a relative decrease in FOXP3 expression in the T zone of mesenteric lymph nodes on the day 21 of the experiment.

Conclusions. Thus, the PSG peptides did not have the expected effect on the level of peripheral and local Treg cells; moreover, the presence of the peptides led to a decrease in the number of these cells.

About the authors

S. А. Zamorina

Perm State National Research University; Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS

Author for correspondence.
Email: zamorina.sa@gmail.com
ORCID iD: 0000-0002-6474-1487

Doctor of Biological Sciences, Leading Researcher, of the Laboratory of Cellular Immunology and Biotechnology, Professor of the Department of Microbiology and Immunology

Russian Federation, Perm; Perm

М. S. Bochkova

Perm State National Research University; Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS

Email: zamorina.sa@gmail.com
ORCID iD: 0000-0001-5784-6224

Candidate of Biological Sciences, Researcher of the Laboratory of Cellular Immunology and Biotechnology, Senior Lecturer of the Department of Microbiology and Immunology

Russian Federation, Perm; Perm

V. P. Timganova

Perm State National Research University; Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS

Email: zamorina.sa@gmail.com
ORCID iD: 0000-0003-4581-1969

Candidate of Biological Sciences, Researcher of the Laboratory of Cellular Immunology and Biotechnology

Russian Federation, Perm

V. V. Vlasova

Пермский государственный национальный исследовательский университет; Институт экологии и генетики микроорганизмов Уральского отделения Российской академии наук – филиал Пермского федерального исследовательского центра Уральского отделения Российской академии наук

Email: zamorina.sa@gmail.com
ORCID iD: 0000-0002-1656-7277

junior researcher, Laboratory of Molecular Immunology, engineer of the Department of Microbiology and Immunology

Russian Federation, Perm; Perm

А. V. Lyubimov

“Imbiocom” LLC

Email: zamorina.sa@gmail.com
ORCID iD: 0009-0002-8732-4210

MD, PhD, Professor, consultant

Russian Federation, Perm

N. P. Loginova

E.A. Vagner Perm State Medical University

Email: zamorina.sa@gmail.com
ORCID iD: 0000-0001-8597-2682

MD, PhD, Associate Professor, Head of the Department of Histology, Embryology and Cytology

Russian Federation, Perm

Yu. A. Charushina

E.A. Vagner Perm State Medical University

Email: zamorina.sa@gmail.com
ORCID iD: 0000-0002-2193-7463

Lecturer, Department of Histology, Embryology and Cytology

Russian Federation, Perm

N. V. Chemurzieva

E.A. Vagner Perm State Medical University

Email: zamorina.sa@gmail.com
ORCID iD: 0009-0006-0228-0896

Candidate of Biological Sciences, Head of the Department of Educational, Methodological and Scientific Support

Russian Federation, Perm

М. B. Rayev

Perm State National Research University; Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS

Email: zamorina.sa@gmail.com
ORCID iD: 0000-0001-6882-4928

Doctor of Biological Sciences, Head of the Laboratory of Cellular Immunology and Nanobiotechnology, Professor of the Department of Microbiology and Immunology

Russian Federation, Perm; Perm

References

  1. Wang L., Wang N., Zhang W. Cheng X., Yan Z., Shao G., Wang X., Wang R. Therapeutic peptides: current applications and future directions. Sig Transduct Target Ther. 2022; 7: A48. doi.org/10.1038/s41392-022-00904-4
  2. Apostolopoulos V., Bojarska J., Chai T.T., Elnagdy S., Kaczmarek K., Matsoukas J., New R., Parang K. et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules. 2021; 26 (2): 430. doi: 10.3390/molecules26020430.
  3. Moldogazieva N.T., Mokhosoev I.M., Terentiev A.A. Pregnancy-specifi c β1-glycoproteins: combined biomarker roles, structure/function relationships and implications for drug design. Curr. Med. Chem. 2017; 3 (24): 245–267. doi: 10.2174/092986732466 6161123090554
  4. Fedoreeva L.I., Kireev I.I., Havinson V.H., Vanyushin B.F. Proniknovenie korotkih fluorescentno-mechennyh peptidov v yadro v kletkah HeLa i specificheskoe vzaimodejstvie peptidov s dezoksiribooligonukleotidami i DNK in vitro. Biohimiya 2011; 76 (11): 1505–1516 (in Russian).
  5. Hori S. FOXP3 as a master regulator of Treg cells. Nat. Rev. Immunol. 2021; 21: 618–619. doi.org/10.1038/s41577-021-00598-9
  6. Rodríguez-Perea A.L., Arcia E.D., Rueda C.M., Velilla P.A. Phenotypical characterization of regulatory T cells in humans and rodents. Clin. Exp. Immunol. 2016; 185 (3): 281–91. doi: 10.1111/cei.12804.
  7. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. 2008. Regulatory T cells and immune tolerance. Cell. 2008; 133: 775–787. doi: 10.1016/j.cell.2008.05.009.
  8. Korsunskij I.A., Rumyancev A.G., Bykovskaya S.N. Rol' regulyatornyh T-kletok CD4+CD25+ i mezenhimal'nyh stvolovyh kletok kostnogo mozga v podavlenii reakcii transplantat protiv hozyaina. Onkogematologiya 2008; 3: 45–51 (in Russian).
  9. Hardt F., Claësson M.H. Graft-versus-host reactions mediated by spleen cells from amyloidotic and nonamyloidotic mice. Transplantation. 1971; 12: 36–39. doi: 10.1097/00007890-197107000-00005
  10. Timganova V.P., Bochkova M.S., SHardina K.YU., Uzhviyuk S.V., Gutina E.V., Raev M.B., Lyubimov A.V., Zamorina S.A. Vliyanie korotkih peptidnyh fragmentov TBG na citokinovyj profil' krys Wistar pri allogennoj transplantacii v eksperimente in vivo. Medicinskaya immunologiya 2022; 24 (3): 491–506. doi: 10.15789/1563-0625-EOS-2472 (in Russian).
  11. Sellaro T.L., Filkins R., Hoffman C., Fine J.L., Ho J., Parwani A.V., Pantanowitz L., Montalto M. Relationship between magnification and resolution in digital pathology systems. J. Pathol. Inform. 2013; 4: 21. DOI: 10.4103/ 2153-3539.116866.
  12. Liu X., Wang X., Ding J., Gao Y., Zhao Y., Zhao R., Sun Q., Zhang S. FOXP3 and CD25 double staining antibody cocktails identify regulatory T cells in different types of tumor tissues using tissue microarrays. Ann Diagn Pathol. 2019; 38: 67–70. doi: 10.1016/j.anndiagpath.2018.11.005.
  13. Martin-Moreno PL., Tripathi S., Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2018; 13 (11): 1760–1764. doi.org/10.2215/CJN.01750218.
  14. Zohouri M., Mehdipour F., Razmkhah M., Faghih Z., Ghaderi A. CD4+CD25-FoxP3+ T cells: a distinct subset or a heterogeneous population? Int. Rev. Immunol. 2021; 40 (4): 307–316. doi: 10.1080/08830185.2020.1797005
  15. Willard-Mack C.L. Normal Structure, Function, and Histology of Lymph Nodes. Toxicologic Pathology 2006; 34 (5): 409–424. doi: 10.1080/01926230600867727
  16. Ochando J.C., Yopp A.C., Yang Y., Garin A., Li Y., Boros P., Llodra J., Ding Y., Lira S.A., Krieger N.R., Bromberg J.S. Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J Immunol. 2005; 174 (11): 6993–7005. doi: 10.4049/jimmunol.174.11.6993.
  17. Bochkova M.C., Timganova V.P., Uzhviyuk S.V., Gutina E.V., Raev M.B., Lyubimov A.V., Zamorina S.A. Vliyanie korotkih peptidov TBG na markery vospaleniya pri allogennoj transplantacii kletok kostnogo mozga u krys Vistar. Byulleten' eksperimental'noj biologii i mediciny 2023; 175 (5): 591–596. doi: 10.47056/0365-9615-2023-175-5-591-596 (in Russian).
  18. Jones K., Bryant S., Luo J., Kiesler P., Koontz S., Warren J., Malech H., Kang E., Dveksler G. Recombinant Pregnancy-Specific Glycoprotein 1 Has a Protective Role in a Murine Model of Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2019; 25 (2): 193–203. doi: 10.1016/j.bbmt.2018.09.022.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of an in vivo experiment to study the effect of TBG peptides on the level of local and peripheral Tregs

Download (75KB)
3. Fig. 2. Absolute (a) and relative (b) number of Tregs (CD4+CD25+FOXP3+) in the peripheral blood of rats with BM allotransplantation and administration of TBH peptides: data are presented as the mean and standard error of the mean; N = 4; * – P < 0.05; ** – P < 0.01; *** – P < 0.001 (two-way ANOVA, post-hoc Tukey test for multiple comparisons)

Download (89KB)
4. Fig. 3. Absolute (a) and relative (b) number of CD4+CD25–FOXP3+ cells in the peripheral blood of rats with BM allotransplantation and administration of TBH peptides: data are presented as the mean and standard error of the mean; N = 4; * – P < 0.05; ** – P < 0.01; *** – P < 0.001 (two-way ANOVA, post-hoc Tukey test for multiple comparisons)

Download (85KB)
5. Fig. 4. Effect of TBG peptides on the level of FOXP3 expression in the cells of the cortex of mesenteric lymph nodes using the example of individual sections (magnitude X400)

Download (179KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies