Study of urinary monocytic chemotactic factor

Cover Page

Cite item

Full Text

Abstract

The review presents the data on clinical diagnostic value of studying one of the components of urinary proteome - macrophage chemotactic protein -1 (MCP-1). Along with the general characteristics of MCP-1, there are given the data on changes in its concentration regarding various diseases of the urinary system. It was shown that for various diseases and research conditions, the concentration of MCP-1 can be an important diagnostic criterion in assessing inflammatory, metabolic, fibrotic and other renal lesions.

About the authors

A. M. Ivanov

Military Medical Academy named after S.M. Kirov

Email: iamvma@mail.ru
ORCID iD: 0000-0002-8899-7524
Scopus Author ID: 55867182100

член-корреспондент РАН, доктор медицинских наук, профессор, заведующий кафедрой
клинической биохимии и лабораторной диагностики, главный специалист по лабораторной диагностике Министерства обороны РФ

Russian Federation, Saint Petersburg

D. Yu. Sosnin

E.A. Vagner Perm State Medical University

Author for correspondence.
Email: sosnin_dm@mail.ru
ORCID iD: 0000-0002-1232-8826
Scopus Author ID: 36020670100

доктор медицинских наук, профессор кафедры
факультетской терапии № 2, профпатологии и клинической лабораторной диагностики

Russian Federation, Perm

K. R. Galkovich

Ltd «MedGarant»

Email: kr20211@yandex.ru
ORCID iD: 0000-0001-9039-7117
SPIN-code: 3576-0522

urologist

Russian Federation, Perm

References

  1. Балацкая Н.В. Состав и свойства слезной жидкости здорового глаза человека. Справочник заведующего КДЛ. 2019; 1: 46–57.
  2. Басанцова Н.Ю., Шишкин А.Н., Тибекина Л.М., Иванов А.О. Церебровисцеральные нарушения у больных в остром периоде ишемического инсульта на фоне метаболического синдрома. Вестник СПбГУ. Серия 11. Медицина 2017; 3: 289–301.
  3. Бобкова И.Н., Чеботарева Н.В., Козловская Л.В., Варшавский В.А., Голицына Е.П. Определение экскреции с мочой моноцитарного хемотаксического протеина-1 (MCP-1) и трансформирующего фактора роста-b1 (TGF-b1) – неинвазивный метод оценки тубулоинтерстициального фиброза при хроническом гломерулонефрите. Нефрология. 2006; 10 (4): 49–55.
  4. Бунин В.А., Линькова Н.С., Пальцева Е.М., Козлов К.Л. Уровень цитокина MCP-1 в периферических тканях как маркер прогрессирования ишемической болезни сердца у лиц пожилого возраста. Комплексные проблемы сердечно-сосудистых заболеваний. 2017; S4: 14–15.
  5. Воробьева И.В. Современные подходы к ранней диагностике, патогенетическому лечению диабетической ретинопатии. Вестник офтальмологии. 2016; 132 (5): 60–67.
  6. Клиническая патофизиология: курс лекций. Под ред. В.А. Черешнева, П.Ф. Литвицкого, В.Н. Цыгана. 2-е изд., испр. и доп. СПб: СпецЛит 2015; 472.
  7. Колотов К.А., Распутин П.Г. Моноцитарный хемотаксический протеин-1 в физиологии и медицине. Пермский медицинский журнал. 2018; 35 (3): 99–105.
  8. Москалев А.В., Рудой А.С., Апчел В.Я. Хемокины, их рецепторы и особенности развития иммунного ответа. Вестник военно-медицинской академии 2017; 2 (58): 182–187.
  9. Папиж С.В., Длин В.В., Виноградова Т.В., Леонтьева И.В., Тутельман К.М., Фомин Д.К., Люгай О.О. Роль профиброгенных цитокинов в прогрессировании почечного и сердечно-сосудистого повреждения у детей с аутосомно-доминантной поликистозной болезнью почек. Рос. вестн. перинатологии и педиатрии. 2014; 3: 91–98.
  10. Ребров А.П., Патрикеева Д.А., Захарова Н.Б., Карпова О.Г., Оксеньчук А.Н. Диагностическое значение определения факторов ангиогенеза и показателей цитокинового состава в сыворотке крови и моче у пациентов с системной склеродермией. Терапевтический архив 2014; 86 (5): 18–25.
  11. Сираева Л.Р., Кальметьева Л.Р., Камилов Ф.Х., Еникеева З.М. Клинико-лабораторные маркеры обмена соединительной ткани при гломерулонефрите у детей. Нефрология 2014; 18 (3): 70–76.
  12. Adhya Z., El Anbari M., Anwar S., Mortimer A., Marr N., Karim M.Y. Soluble TNF-R1, VEGF and other cytokines as markers of disease activity in systemic lupus erythematosus and lupus nephritis. Lupus 2019; 28 (6): 713–721.
  13. Armbruster C.E., Smith S.N., Mody L., Mobley H.L.T. Urine Cytokine and Chemokine Levels Predict Urinary Tract Infection Severity Independent of Uropathogen, Urine Bacterial Burden, Host Genetics, and Host Age. Infect Immun 2018; 86 (9): e00327–00418.
  14. Beker B.M., Corleto M.G., Fieiras C., Musso C.G. Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol 2018; 50 (4): 705–713.
  15. Bielinski S.J., Pankow J.S., Miller M.B., Hopkins P.N., Eckfeldt J.H., Hixson J., LiuY., Register T., Myers R.H., Arnett D.K. Circulating MCP-1 levels shows linkage to chemokine receptor gene cluster on chromosome 3: the NHLBI family heart study follow-up examination. Genes Immunity 2007; 8 (8): 684–690.
  16. Brunner H.I., Bennett M.R., Gulati G., Abulaban K., Klein-Gitelman M.S., Ardoin S.P., Tucker L.B., Rouster-Stevens K.A., Witte D., Ying J., Devarajan P. Urine Biomarkers to Predict Response to Lupus Nephritis Therapy in Children and Young Adults. J Rheumatol 2017; 44 (8): 1239–1248.
  17. Bushehri A., Czarnota G., Zhang L., Hynynen K., Huang Y., Chan M., Chu W., Dennis K., Mougenot C., Coccagna J., Sahgal A., Chow E., DeAngelis C. Urinary cytokines/chemokines after magnetic resonance-guided high intensity focused ultrasound for palliative treatment of painful bone metastases. Ann Palliat Med 2017; 6 (1): 34–54.
  18. Callewaere C., Banisadr G., Rostene W., Parsadaniantz S.M. Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J Mol Endocrinol 2007; 38: 355–363.
  19. Chirackal R.S., Jayachandran M., Wang X., Edeh S., Haskic Z., Perinpam M., Halling T.M., Mehta R., Rivera M.E., Lieske J.C. Urinary extracellular vesicles associated MCP-1 and NGAL derived from specific nephron segments differ between calcium oxalate stone formers and controls. Am J Physiol Renal Physiol 2019; 317 (6): 1475–1482.
  20. Cipitelli M.D.C, Amâncio Paiva I., Badolato-Corrêa J., de-Oliveira-Pinto L.M. Influence of chemokines on the endothelial permeability and cellular transmigration during dengue. Immunol Lett 2019; 212: 88–97.
  21. De-Oliveira-Pinto L.M., Marinho C.F., Povoa T.F., de Azeredo E.L., de Souza L.A., Barbosa L.D., Motta-Castro A.R., Alves A.M., Ávila C.A., de Souza L.J., da Cunha R.V., Damasco P.V., Paes M.V., Kubelka C.F. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever. PLoS One 2012; 7 (7): e38527.
  22. Dong X., Zheng Z., Luo X., Ding J., Li Y., Li Z., Li S., Rong M., Fu Y., Wu Z., Zhu P. Combined utilization of untimed single urine of MCP-1 and TWEAK as a potential indicator for proteinuria in lupus nephritis: A case-control study. Medicine (Baltimore) 2018; 97 (16): e0343.
  23. Grönberg-Hernández J., Sundén F., Connolly J., Svanborg C., Wullt B. Genetic control of the variable innate immune response to asymptomatic bacteriuria. PLoS One 2011; 6 (11): e28289.
  24. Khan S.R., Glenton P.A. Experimentally induced hyperoxaluria in MCP-1 null mice. Urol Res 2011; 39 (4): 253–258.
  25. Kruglov E.A., Nathanson R.A., Nguyen T., Dranoff J.A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am J Physiol Gastrointest Liver Physiol 2006; 290 (4): G765–771.
  26. Mansour S.G., Puthumana J., Coca S.G., Gentry M., Parikh C.R. Biomarkers for the detection of renal fibrosis and prediction of renal outcomes: a systematic review. BMC Nephrol 2017; 18 (1): 72.
  27. Mansour S.G., Puthumana J., Reese P.P., Hall I.E., Doshi M.D., Weng F.L., Schröppel B., Thiessen-Philbrook H., Bimali M., Parikh C.R. Associations between Deceased-Donor Urine MCP-1 and Kidney Transplant Outcomes. Kidney Int Rep 2017; 2 (4): 749–758.
  28. McDermott D.H., Yang Q., Kathiresan S., Cupples L.A., Massaro J.M., Keaney J.F., Larson M.G., Vasan R.S., Hirschhorn J.N., O'Donnell C.J., Murphy P.M., Benjamin E.J. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 2005; 112 (8): 1113–1120.
  29. Messchendorp A.L., Meijer E., Boertien W.E., Engels G.E., Casteleijn N.F., Spithoven E.M., Losekoot M., Burgerhof J.G.M., Peters D.J.M., Gansevoort R.T. DIPAK Consortium. Urinary Biomarkers to Identify Autosomal Dominant Polycystic Kidney Disease Patients with a High Likelihood of Disease Progression. Kidney Int Rep 2017; 3 (2): 291–301.
  30. Musiał K., Bargenda A., Drożdż D., Zwolińska D. New Markers of Inflammation and Tubular Damage in Children with Chronic Kidney Disease. Dis Markers 2017; 2017: 9389432.
  31. Naruse K., Ueno M., Satoh T., Nomiyama H., Tei H., Takeda M., Ledbetter D.H., Coillie E.V., Opdenakker G., Gunge N., Sakaki Y., Iio M., Miura R. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2. Genomics 1996; 34: 236–240.
  32. Nisha K.J., Suresh A., Anilkumar A., Padmanabhan S. MIP-1 and MCP-1 as salivary biomarkers in periodontal disease. Saudi Dent J 2018; 30 (4): 292–298.
  33. Okamoto M., Kohjimoto Y., Iba A., Saji F., Hara I., Shigematsu T. Calcium oxalate crystal deposition in metabolic syndrome model rat kidneys. Int J Urol 2010; 17 (12): 996–1003.
  34. Parikh C.R., Mansour S.G. Perspective on Clinical Application of Biomarkers in AKI. J Am Soc Nephrol 2017; 28 (6): 1677–1685.
  35. Park M., Katz R., Shlipak M.G., Weiner D., Tracy R., Jotwani V., Hughes-Austin J., Gabbai F., Hsu C.Y., Pfeffer M., Bansal N., Bostom A., Gutierrez O., Sarnak M., Levey A., Ix J.H. Urinary Markers of Fibrosis and Risk of Cardiovascular Events and Death in Kidney Transplant Recipients: The FAVORIT Trial. Am J Transplant 2017; 17 (10): 2640–2649.
  36. Ramm G.A., Shepherd R.W., Hoskins A.C., Greco S.A., Ney A.D., Pereira T.N., Bridle K.R., Doecke J.D., Meikle P.J., Turlin B., Lewindon P.J. Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemotaxis protein-1 in hepatic stellate cell recruitment. Hepatology 2009; 49 (2): 533–544.
  37. Ruffini P.A., Morandi P., Cabioglu N., Altundag K., Cristofanilli M. Manipulating the chemokine-chemokine receptor network to treat cancer. Cancer 2007; 109: 2392–2404.
  38. Satirapoj B., Dispan R., Radinahamed P., Kitiyakara C., Satirapoj B., Dispan R., Radinahamed P., Kitiyakara C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol 2018; 19 (1): 246.
  39. Thakur V., Chattopadhyay M. Early Urinary Markers for Diabetic and Other Kidney Diseases. Curr Drug Targets 2018; 19 (7): 825–831.
  40. Vijayakumar U.G., Milla V., Cynthia Stafford M.Y., Bjourson A.J., Duddy W., Duguez S.M. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10: 400.
  41. Wang J., Ying Q., Zhong S., Chen Y., Di Y., Dai X., Zheng J., Shen M. Elevated urinary monocyte chemoattractant protein-1 levels in children with Henoch-Schonlein purpura nephritis. Pediatr Neonatol 2018; 59 (3): 238–243.
  42. Wu L., Li X.Q., Chang D.Y., Zhang H., Li J.J., Wu S.L., Zhang L.X., Chen M., Zhao M.H. Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease. Nephrol Dial Transplant 2018; 1–7.
  43. Yang X., Yang T., Li J., Yang R., Qi S., Zhao Y., Li L., Li J., Zhang X., Yang K., Xu Y., Liu C. Metformin prevents nephrolithiasis formation by inhibiting the expression of OPN and MCP-1 in vitro and in vivo. Int J Mol Med 2019; 43 (4): 1611–1622.

Copyright (c) 2020 Ivanov A.M., Sosnin D.Y., Galkovich K.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies